Observation of a Borospherene

(all-boron fullerene)

nature chemistry 2014, 6, 727-731.

                   

Endohedral and Exohedral Metalloborospherenes:

M@B40 (M=Ca,Sr) and M&B40 (M=Be, Mg)

Angewandte Chemie International Edition 2014, 53, xxx.

                   

Experimental and Theoretical Evidence of

an Axially Chiral Borospherene

ACS Nano 2014.

                   

Quasi-Planar Aromatic B36 And B36- Clusters:

All-Boron Analogues Of Coronene

Physical Chemstry Chemical Physics 2014, 34, 18282-7.

                   

The B35 Cluster with a Double-Hexagonal Vacancy: 

a New and More Flexible Structural Motif for

Borophene

Journal of the American Chemical Society (Communication) 2014, 136, 12257-12260.

                   

Fluxional Bonds in Planar B19-,

Tubular Ta@B20-, and Cage-Like B39-

J. Comput. Chem. 2018, DOI: 10.1002/jcc.25728.

 

欢迎光临纳米团簇与纳米材料实验室(NNL)                            

  

      山西大学分子科学研究所纳米团簇与纳米材料实验室(NNL)是山西省团簇与材料研究重点实验室。本实验室以“理论与实验相结合”为研究特色,在材料科学与工程领域知名于国内外。

      NNL旨在设计和发现可作为能源材料的新型纳米结构,包括原子纳米团簇、混合纳米团簇、一维纳米管及二维纳米层等。NNL研究人员已经顺利完成国家自然科学基金与山西省自然科学基金项目二十余项,在国际国内权威学术期刊发表论文二百多篇。

      我们的研究兴趣主要集中在如下五个方向:
      (1)新颖纳米团簇:稳定原子纳米团簇和混合纳米团簇可以作为纳米材料“自下而上”构筑方案的基本结构单元。硼作为周期表中典型的缺电子元素,易于形成多中心离域键。研究表明,硼团簇形成各种重要和含有特殊化学成键的新颖纳米结构,包括已知的平面Bn-/0 (n = 3-36)、管状Bn+ (n = 16-30)及我们最近发现的笼状硼球烯(如B39- 和B40-/0)。中等尺寸硼团簇是一广阔的未知领域,有待理论和实验工作者共同探索。
      采用理论与实验相结合的方法,目前我们正研究中等尺寸的硼基纳米团簇,包括其几何与电子结构、成键特性、生长机理和可能的应用等方面。具体理论方法包括全局极小结构搜索、密度泛函理论(DFT)和精确量子化学从头算方法,实验方法则采用国际先进的高分辨红外光解离谱(IR-PDS)与光电子能谱(PES)、电弧放电、激光溅射等。
      (2)硼羰基化学:硼羰基BO作为σ自由基,与CN为等价电子体系,又与H具有等瓣相似性。近年来,基于本课题组的努力,硼羰基化学已经发展成为一个新的研究领域。硼羰基作为硼氧化物与硼烷之间联系的桥梁,为设计新颖硼氧化物团簇和硼羰基复合物提供了理论和实验基础。我们结合先进实验手段(IR-PDS与PES)和第一性原理计算,设计、合成、表征新型硼氧化物团簇,旨在丰富硼的化学和材料应用,发展化学键理论。
      (3)平面四配位碳:在过去的二十年中,平面四配位碳作为碳的新颖成键类型,已经被用于设计各种新颖纳米结构。我们的研究目标是通过理论计算设计更多含有平面四配位碳的稳定团簇,探索其作为新型纳米材料结构单元的可能性。
      (4二维纳米材料:自从2004年石墨烯发现以来,许多新型二维材料已经被设计和制备出来,包括二维碳层和硼层纳米材料。我们旨在通过对新型纳米层进行掺杂与修饰,设计具有新颖电子性质、力学性质和光学性质的新型纳米材料,为光电子器件应用提供更多的备选材料。
     (5)能源材料:山西省以煤炭与煤层气资源丰富著称。为提高资源利用效率,迫切需要发展高效能源材料。在过去的十年中,NNL已经设计并制备了多种高效能源储存与转化材料,包括直接碳-固体氧化物燃料电池(SOFC)、锂离子电池和太阳能电池等。该项目获得国家和山西省政府大力支持。

      我们与国内清华大学李隽教授、南京大学王广厚教授、南京工业大学邵宗平教授、美国布朗大学王来生教授、犹他州立大学Alexander I. Boldyrev教授、莱斯大学Boris I. Yakobson教授及英国伯明翰大学Roy Johnston教授有着卓有成效的科研合作。实验室老师与学生有诸多机会参与国际国内合作项目。


 

欢迎光临纳米团簇与纳米材料实验室(NNL)                            

学术带头人:
 

李思殿,翟华金,王越奎,韩高义,吴艳波,吕海港                            

 

Welcome to the Nanoclusters & Nanomaterials Laboratory (NNL)

  

    The Nanoclusters & Nanomaterials Laboratory (NNL) in the Institute of Molecular Science, Shanxi University, is the key laboratory for clusters and materials research in Shanxi province, which is known nationally and internationally in integrating the state-of-the-art experimental and theoretical approaches in materials science and engineering.
    The NNL aims to discover and rationally design new nanostructures as potential energy materials, including elemental and mixed nanoclusters, one-dimensional (1D) nanotubes, and two-dimensional (2D) nanosheets, among others. Faculty members in the NNL have completed over twenty research projects, from both the Natural Science Foundation of China (NSFC) and the Shanxi Natural Science Foundation. They have published over 200 research papers in international journals.
    Our research interests mainly focus on the following areas:
    (1) Novel Nanoclusters: As a bottom-up approach, stable elemental and mixed nanoclusters may serve as building blocks for nanomaterials. Boron, the prototypical electron-deficient element in the periodic table, is well-known for multicenter bonds. Boron forms various kinds of important and interesting nanoclusters, from the planar Bn-/0 (n = 3-36) clusters, tubular Bn+ (n= 16-30) clusters, to the cage-like borospherenes (such as B39- and B40-/0). Much more remains to be explored in the medium-sized range.
    Using the joint theoretical and experimental approach, we are currently investigating the medium-sized boron-based nanoclusters, focusing on their geometric and electronic structures, bonding characters, growth mechanisms, and possible applications. Specifically, the theoretical methods involve the global-minima searches, density functional theory (DFT), and accurate ab initio calculations, whereas the experimental techniques include the infrared photodissociation spectroscopy (IR-PDS), photoelectron spectroscopy (PES), arc-discharge, and laser-sputtering.
    (2) Boronyl Chemistry: Being isovalent with CN and isolobally analogous with H as a monovalent σ radical, the boronyl group (BO) has lately emerged as a new branch of chemistry: the so-called “boronyl chemistry”. Boronyl provides an unexpected link between boron oxide clusters and boranes, allowing the design of new boron oxide clusters and boron boronyl complexes. We utilize both experimental approaches (IR-PDS and PES) and first-principles theoretical methods to design, produce, characterize new boron oxide clusters, which will effectively enrich the chemistry of boron and may eventually help expand the chemical bonding theory in general.
     (3) Tetracoordinate Planar Carbon: As a novel bonding species of carbon, the tetracoordinate planar carbon has been used to design various new nanostructures in the past 20 years. We aim to computationally design more stable species with tetracoordinate planar carbon, and to explore their potential applications as building blocks for new nanomaterials.
    (4) Two-Dimensional Nanomaterials: With the rise of graphene, many new two-dimensional materials have been designed and prepared in the past decade, including the new two-dimensional carbon sheets and boron sheets. Upon doping and modification of new nano sheets, we aim to computationally design new nanomaterials with novel electric, mechanical, and optical properties, via global structural searches and accurate theoretical calculations. This effort will provide more candidate materials for the electronic devices.
   (5) Energy Materials: Shanxi province is rich in coals and coal-bed methane and has the urgent need to develop high-efficiency energy materials to effectively utilize these natural resources. The NNL has been designing and preparing high-efficiency energy storage and transformation materials for direct-coal-power SOFC, lithium-ion batteries, and solar cells in the past ten years. This project gets strong support from both the national and the provincial governments.
    We have fruitful collaborations with Prof. Jun Li (Tsinghua University), Prof. Guang-Hou Wang (Nanjing University), Prof. Zong-Ping Shao (Nanjing Industrious University), Prof. Lai-Sheng Wang (Brown University, USA), Prof. Alexander I. Boldyrev (Utah State University, USA), Prof. Boris I. Yakobson (Rice University, USA), and Prof. Roy Johnston (Birmingham University, UK). Our faculty members and graduate students have good chances to participate in both national and international collaborative projects.


 

Welcome again to the NNL!

Principal investigators:                            

Si-Dian Li, Hua-Jin Zhai,Yue-Kui Wang,Gao-Yin Han,Yan-Bo Wu,and Hai-Gang Lu.