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Abstract We perform in this work a comprehensive first-principles investigation

on the geometric and electronic structures of Au(BO)2
- and Au(BS)2

- which are

valent isoelectronic to the well-known Au(CN)2
- monoanion. Au(BO)2

- and

Au(BS)2
- complexes prove to possess linear ground-state structures similar to

Au(CN)2
- and the BO- and BS- ligands in them are found to be coordinated

terminally via boron atoms to gold centers which are weakly negatively charged.

Au–B bonds in Au(BO)2
- and Au(BS)2

- appear to have higher Wiberg bond indices

(0.79 and 0.80) and more covalent components (60 and 53 %) than the corre-

sponding values of Au–C interaction in Au(CN)2
- (0.67 and 39 %, respectively) at

the same theoretical levels. Their Au–B bifurcation values of the electronic local-

ization function also turn out to be higher than Au–C. These results strongly suggest

that the Au–B bonds in Au(BO)2
- and Au(BS)2

- with multiple-bond character

possess stronger covalent characters than Au–C in Au(CN)2
-.

Keywords Gold complex � Ab initio calculation � Natural bonding orbital �
Covalent bonding

Introduction

Recently, the catalytic chemistry of Au(I) complexes has attracted considerable

attention [1]. Many Au(I) complexes, such as AuCN [2], Au(CN)2
- [3], AuO-,
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AuS- [4], AuX2
- (X = Cl, Br and I) [5], YAuCN- (Y = F, Cl, Br and I) [6], had

been investigated using combined experimental and theoretical methods. Because of

the relativistic effects of gold [7], these Au(I) complexes exhibit different bonding

characters from Cu(I) and Ag(I) complexes [3, 8]. For instance, the Au–C bonds in

the most stable Au(I) ion, Au(CN)2
-, possess significant covalent bonding with

multiple-bond character due to Au 6s–5d hybridization, while the Cu–C and Ag–C

bonds are mainly ionic in Cu(CN)2
- and Ag(CN)2

- complexes [3].

As isoelectronic ligand of CN-, boronyl anion BO- with a B:O triple bond can

form complexes with the transition metals [9–12], such as Au and Pt. Auro-boron

oxides AunBO- (n = 1–3) had been investigated by combined photoelectron

spectroscopy and theoretical calculations [13], in which the Aun cores were found

to be terminated at a corner position by BO ligand through boron atom. Recently,

Braunschweig et al. [14] synthesized for the first time the trans-[(Cy3P)2BrPt(B:O)]

(Cy being cyclohexyl) crystal which contains a BO ligand with B:O triple bond

character.

As the valent isoelectronic complexes of Au(CN)2
-, Au(BO)2

- and Au(BS)2
-

monoanions may have similar geometric and electronic structures with Au(CN)2
-.

Because the Pauling electronegativity of boron (2.04) is lower than that of carbon

(2.55), Au–B bond is expected to possess stronger covalent character than Au–C

bond and a comparison between them would shed new insight into the bonding

nature of Au(I) complexes in general. We present here a detailed first-principles

investigation on the geometric and electronic structures and bonding characters of

Au(BO)2
- and Au(BS)2

- and compare them with Au(CN)2
- throughout the work.

Computational Methods

We employed the Coalescence Kick (CK) global minimum search program [15, 16]

to determinate the global minima of Au(BO)2
- and Au(BS)2

- on their potential

energy surfaces, using the hybridized B3LYP [17, 18] method with the LanL2DZ

basis [19] on gold and 3–21G on B, O, and S. All low-lying isomers found were

re-optimized at the B3LYP level, with additional single-point calculations at the

coupled cluster method including triple excitations (CCSD(T)) level [20–24], using

the Stuttgart relativistic small-core pseudopotential and valence basis set augmented

with two f and one g function on gold (SDD hereafter) [25] and aug-cc-pVTZ on the

other elements (AVTZ hereafter) [26, 27]. The ground-state structures of linear

Au(BO)2
-, Au(BS)2

-, and Au(CN)2
- were finally optimized at the CCSD(T)/

SDD ? AVTZ level. All calculations were performed using the Gaussian 09

package [28].

Chemical bonding was investigated by means of molecular orbital (MO), natural

bond orbital (NBO 3.1) [29], and the quantum theory of atoms in molecules

(QTAIM) [30] at the B3LYP/SDD ? AVTZ level. Electron localization function

(ELF) [31, 32] analysis was performed with the TOPMOD package [33] and the

Jmol program [34] was chosen for the visualization of MO and ELF results. The

QTAIM bond critical points and the total energy density of Au–B/C bonds were
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obtained using PROAIM [35], and the QTAIM delocalization indices (bond orders)

between Au and B/C atoms were evaluated using AIMDELOC [36].

Results and Discussion

Geometrical Structures

The reliability of our theoretical approach was first tested with Au(CN)2
- which

possesses the calculated Au–C bond lengths of 2.01 and 2.05 Å at B3LYP/

SDD ? AVTZ and CCSD(T)/SDD ? AVTZ (see Table 1), respectively. These

values agree with the experimentally measured Au–C distances in solid Au(CN)2
-

salts (1.98–2.12Å) and are well inline with the previous reported value of 1.99 Å

obtained at PW91/TZ2P [3].

Au(BO)2
- and Au(BS)2

- anions turned out to possess singlet linear ground-state

structures which lie much lower ([30 kcal/mol) than other isomers obtained at both

B3LYP/SDD ? AVTZ and CCSD(T)/SDD ? AVTZ//B3LYP/SDD ? AVTZ lev-

els (Fig. 1). Furthermore, their triplet energies appeared to be about 106.5 and

82.4 kcal/mol higher than the singlet ones, respectively. The dissociation energies

of Au(BY)2
- ? Au ? BY- ? BY (Y = O or S) are more than 140 kcal/mol

(Table 1), indicating that both the Au(BO)2
- and Au(BS)2

- complexes are highly

stable.

In Au(BO)2
- and Au(BS)2

- anions, both BO- and BS- ligands are coordinated

terminally via boron to the gold centers, similar to the CN- ligand in Au(CN)2
-. The

calculated Au–B bond lengths of rAu–B = 2.10 at B3LYP and rAu–B = 2.15 Å at

CCSD(T) are close to the Au–B single bond length of 2.09 Å [37], indicating that

Au–B bond is approximately a single bond.

Because of their valent isoelectronic character and the geometric similarity with

Au(CN)2
-, Au(BO)2

- and Au(BS)2
- may serve as new candidate monoanions in gold

catalytic chemistry. Such monoanions may be effectively stabilized in inorganic

salts when incorporated with suitable counter-ions like Li? [11].

Table 1 Calculated bond lengths (r/Å) of the linear Au(CN)2
-, Au(BO)2

- and Au(BS)2
- and dissociation

energies (DE/(kcal/mol)) of Au(BY)2
- ? Au ? BY- ? BY (Y = O or S) at the B3LYP and

CCSD(T) levels using the SDD ? AVTZ basis set

Au(XY)2
- Method rAu-X rX-Y DE

Au(CN)2
- B3LYP 2.01 1.16

CCSD(T) 2.05 1.14

PW91/TZ2Pa 1.99 1.17

Au(BO)2
- B3LYP 2.10 1.22 171.7

CCSD(T) 2.15 1.20 143.8

Au(BS)2
- B3LYP 2.09 1.65 167.4

CCSD(T) 2.14 1.64 232.3

a Ref. 3
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Å

.
R

el
at

iv
e

en
er

g
ie

s
(i

n
cl

u
d
in

g
th

e
th

er
m

al
co

rr
ec

ti
o
n
)

ar
e

g
iv

en
at

B
3

L
Y

P
/S

D
D

?
A

V
T

Z
an

d
C

C
S

D
(T

)/
S

D
D

?
A

V
T

Z
//

B
3

L
Y

P
/S

D
D

?
A

V
T

Z
(i

n
cu

rl
y

b
ra

ck
et

s)

C.-Q. Miao et al.

123

Author's personal copy



Covalent Bonding Character

Because the relativistic effects stabilize Au 6s orbital and destabilize Au 5d orbitals

to reduce the 6s–5d energy gap and enhance s-d hybridization, Au exhibits

significant covalent bonding characters, in contrast to its lighter congeners Ag and

Cu. For instance, Au–C forms significant covalent Au–C bond with multiple-bond

character, as observed in Au(CN)2
- [3, 8].

Similar covalent bonding occurs to Au(BO)2
- and Au(BS)2

-. As shown in

Table 2, the calculated net natural atomic charge of Au is ?0.20, -0.20 and -0.05

|e| in Au(CN)2
-, Au(BO)2

- and Au(BS)2
-, respectively, which indicates that gold acts

as a weak electron donor in Au(CN)2
- and weak electron acceptors in both Au(BO)2

-

and Au(BS)2
- due to the difference in electronegativiy between boron and carbon.

The Au–B Wiberg bond indices [38] are 0.79 and 0.80 in Au(BO)2
- and Au(BS)2

-,

respectively, which are obviously higher than corresponding value of 0.67 obtained

for Au–C in Au(CN)2
- at the same theoretical level. More interestingly, the covalent

components of 60 and 53 % calculated for the Au–B bonds in Au(BO)2
- and

Au(BS)2
- at natural resonance theory (NRT) are obviously higher than the covalent

component of 39 % obtained for Au–C bond in Au(CN)2
-. The triple bonds in

C:N, B:O, and B:S ligands are also well demonstrated by their calculated NRT

bond orders between NRTX-Y = 2.98 * 2.96 (see Table 2). These results strongly

suggest that the Au–B bonds in Au(BO)2
- and Au(BS)2

- (which are mainly covalent

as indicated above) possess stronger covalent bond character than the Au–C

bonding observed in Au(CN)2
- [3, 8].

Electron localization functions (ELF) reflecting the probability to find electron

pairs in specific regions provide a more vivid description of the increasing

covalence from Au–C to Au–B (see Fig. 2). The ELF bifurcation values [30, 31]

estimated from ELF pictures increase from 0.25 in Au(CN)2
- to 0.30 in both

Au(BO)2
- and Au(BS)2

- (see Table 2). These values provide further evidences to

support the increasing covalence from Au(CN)2
- to Au(BO)2

- and Au(BS)2
-.

The negative value of the total energy density (Hbcp) at the bond critical point

(BCP) is an alterative indictor of covalent bond [39]. The negative Hbcp’s values

calculated for these three gold complexes (Table 2) indicate that the Au–X (X = C,

Table 2 Natural atomic charges (Q/|e|), Wiberg bond indices (WBI), NRT bond orders (NRT) and their

covalent component percentages (CNRT) and ionic component percentages (INRT), the bifurcation

values of electronic localization functions (ELF), and the total energy densities at QTAIM bond critical

points (Hbcp) of Au–B/C bonds obtained for Au(CN)2
-, Au(BO)2

-, and Au(BS)2
-

Au(XY)2
- QAu Qx Qy WBI NRT CNRT

(%)

INRT

(%)

NRTX–Y ELF Hbcp

Au(CN)2
- 0.20 -0.07 -0.53 0.67a 0.93 39 61 2.98 0.25 -0.06

Au(BO)2
- -0.20 0.53 -0.94 0.79 0.90 60 40 2.97 0.30 -0.07

Au(BS)2
- -0.05 -0.01 -0.47 0.80 0.92 53 47 2.96 0.30 -0.05

a With Au 6p explicitly included as valence atomic orbitals in NBO analyses in the Gaussian 09 package

employed in this work. Using NBO analysis in Gaussian03 package, the calculated WBIAu–C value of

0.55 is very close to that of WBIAu–C = 0.58 reported in Ref. 3
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B) bonds in them possess obvious covalent character. However, their magnitudes

are small, suggesting that the covalent character of these bonds is relatively weak.

Molecular Orbital Analysis

Canonical molecular orbital pictures show the Au–X bonding patterns of Au(CN)2
-,

Au(BO)2
-, and Au(BS)2

-. As shown in Fig. 3a for Au(BO)2
-, the HOMO (ru) and

HOMO-8 (rg) mainly stand for the most concerned Au–B r interactions (with

HOMO-6 (rg) also making certain contribution to Au–B bonding). The doubly

degenerate HOMO-5 and HOMO-2 represent the Au–B p bonding and p*

antibonding, respectively (which will cancel each other in principle). The other

valence MOs stand for the B:O triple bonds (two pMOs and one r MO) and the

non-bonding lone pairs on Au or oxygen atoms. The bonding picture of Au(BS)2
- is

very similar to that of Au(BO)2
-, except for the slight difference in MO energy order

(Fig. 3b).

Detailed natural bond orbital analysis help to reveal the subtle differences

between Au–B and Au–C bonds. Natural population analysis indicate that the

valence orbital populations of Au are 6s1.035d9.646pz
0.14, 6s1.235d9.746pz

0.24 and

6s1.125d9.726pz
0.22 in Au(CN)2

-, Au(BO)2
- and Au(BS)2

-, respectively. The increasing

Fig. 2 ELFs for Au(BO)2
-, Au(BS)2

- and Au(CN)2
-

C.-Q. Miao et al.
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6pz populations (0.14–0.24) indicate that Au 6p orbitals play an important role in the

formation of the Au–B/C bonds and they should be included as valence atomic

orbitals in theoretical calculations (as we did in this work). The atomic orbital

populations of Au in Au(BO)2
- and Au(BS)2

- are about 0.08–0.20 |e| higher than that

in Au(CN)2
- which are in good agreement with the net atomic charges Au carries in

theses monoanions (see Table 2). Thus, every Au valence orbital makes certain

contribution to promote the covalent components in Au–B bonds compared to Au–C

bond.

NRT bond orbital analysis indicates that there are two equivalent Au–C or Au–B r
bonds linearly arranged around the Au center (Fig. 4a and b), with the orbital

hybridizations of 0.45Au sp1.24 ? 0.89C sp0.85, 0.55Au sp1.19 ? 0.83B sp0.60, and

0.53Au sp1.14 ? 0.85B sp0.81 for Au(CN)2
-, Au(BO)2

-, and Au(BS)2
-, respectively.

Au sp1.14-1.24 hybridized atomic orbitals contribute 20, 30, and 28 % to the Au–X r
bonds in Au(CN)2

-, Au(BO)2
-, and Au(BS)2

-, respectively (Note the important

contributions from Au 6p as mentioned above). Such an increasing percentage

enhances the covalence of the Au-X bonds from Au–C to Au–B. In addition, there is

an s–dz2 hybridization lone-pair orbital on the Au center which reaches the vicinity of

B/C atoms (Fig. 4c). Although there is no explicit overlap between Au s–dz2 and B/C,

the extended Au s–dz2 orbital is expected to make certain contribution to Au–B/C

Fig. 3 Canonical molecular orbitals (with an isovalue of 0.02 a.u.) and their energies (in brackets) of
linear Au(BO)2

- (a) and Au(BS)2
- (b) at B3LYP/SDD ? AVTZ level. All the p and d MOs are doubly

degenerate in energy

Fig. 4 NRT bonding orbitals of Au(BO)2
- with an isovalue of 0.02 a.u. at B3LYP/SDD ? AVTZ level:

a and b are the Au–B r orbitals and c is the Au s–dz2 hybridization orbital
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bonding, rendering multiple-bond character to the Au-X bonds in Au(CN)2
-,

Au(BO)2
-, and Au(BS)2

-.

To quantitatively describe the multiple-bond character of Au–B bonds, the

numbers of electron pairs shared between Au and B atoms were evaluated using the

QTAIM delocalization index by integrating the exchange density once over each of

the two atomic basins. [40] The Au–X shared electron pairs are 1.00, 1.11, and 1.09

in the Au(CN)2
-, Au(BO)2

-, and Au(BS)2
-, respectively. Obviously, the Au–B bond

orders are greater than one and therefore the Au–B interactions in both Au(BO)2
-

and Au(BS)2
- possess certian multiple bond character.

Conclusion

In conclusion, we reported an ab initio study on the Au(I) complexes: Au(BO)2
- and

Au(BS)2
-. Their geometric structures are linear and the BO and BS ligands in them

are coordinated terminally via boron to the metal center, similar to the situation in

Au(CN)2
-. The calculated Wiberg bond indices, covalent component percentages,

and ELF bifurcation values of Au–B bonds appear to be higher than that of the

Au–C bond, suggesting that the Au–B bonds in Au(BO)2
- and Au(BS)2

- possess

stronger covalent bond characters than Au–C bonding in Au(CN)2
-. Furthermore,

the natural bond orbital analysis and the QTAIM shared electron pairs demonstrated

that the Au–B bonds possess multiple bond character in Au(BO)2
- and Au(BS)2

-. As

Auro-boron oxides AunBO- (n = 1–3) have been observed in experiments, their

analogues of Au(BO)2
- and Au(BS)2

- are expected to be synthesized in gas phases

by laser ablation and characterized with photoelectron spectroscopy measurements

combined with ab initio calculations.
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