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a  b  s  t  r  a  c  t

Three  salicylaldehyde  derivatives,  namely  5-nitrosalicylaldehyde  fluorescein  hydrazone  (1),  5-
diethylaminosalicylaldehyde  fluorescein  hydrazone  (2),  and di(5-diethylamino  salicylaldehyde)
hydrazide  (3),  were  synthesized  and  characterized.  Their  ability  to recognize  copper  ions was  investigated
by UV–visible  and  fluorescence  spectroscopies,  with  2  shown  to  be an  optimal  probe  for  effective  detec-
tion  of Cu2+. More  importantly,  to  explore  the  optical  properties  of  these  probes,  and  their  mechanism
eywords:
hemosensors
opper
V–visible and fluorescence spectroscopy
FT

for  recognition  of  Cu2+ ions,  B3LYP/6-311+G(d,p)  density  functional  calculations  were  used  to  investigate
the  molecular  orbitals  and  electronic  excitations  of  each  probe.  In addition,  because  the  2-Cu2+ complex
exhibits  anion-induced  fluorescence  enhancement,  we  illustrate  its  potential  application  to bioimaging.

© 2012 Elsevier B.V. All rights reserved.
nion bioimaging

. Introduction

Copper is among the more important of the transition metals
n the human body and it is not only important for various phys-
ological aspects, such as bone formation, cellular respiration, and
onnective tissue development, but also serves as an important cat-
lytic cofactor for several metalloenzymes [1–4]. A deficiency of
opper can lead to anemia or pancytopenia, whereas excess cop-
er can lead to the mismetallation of other metal binding sites.
ree copper acts as a catalyst for Fenton-type reactions, which pro-
uce reactive oxygen species, and misregulation of copper uptake

s known to cause Menkes and Wilson’s disease [5–7]. On the other
and, copper is the third most abundant essential trace element in
he human body (after Fe2+ and Zn2+) and is commonly found as
u2+ in natural water [8,9]. The recommended daily allowance of

opper, as suggested by National Research Council ranges from 1.5
o 3.0 mg  for adults, 1.5 to 2.5 mg  for children, and 0.4 to 0.6 mg
or infants [10]. According to the guidelines for drinking-water
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925-4005/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.snb.2012.12.043
quality of the World Health Organization, copper is identified as
a “chemical of health significance in drinking-water” [11]. Copper
is also a widely used industrial metal. Its cation is toxic at high con-
centrations [12], but in trace amounts it is also involved in brain
diseases such as Alzheimer’s and Parkinson’s, and in prion disease
[13,14]. Consequently, effective detection of Cu2+ in water or phys-
iological samples is of toxicological and environmental concern
[15–18].

Copper ions can be detected using several instrumental tech-
niques [19]. However, these methods are time-consuming and
require expensive instrumentation. Chemosensors are power-
ful molecular tools that can be used to detect many different
target molecules, including biological markers and environmen-
tal pollutants [20–25].  Many of these systems are based on
well established and unique molecular frameworks, such as
coumarins [26–28],  quinolines [29], rhodamines [30–36],  BOD-
IPY dyes [37–39],  calixarenes [40–43],  and their detection process
and mechanisms are also multifarious [26–46]. In our previ-
ous work, we  studied and reported on two  copper sensors
[47,48]. In the present work, we report on the synthesis and
characterization of three compounds that contain similar struc-

tures to each other: 5-nitrosalicylaldehyde fluorescein hydrazone
(1), 5-diethylaminosalicylaldehyde fluorescein hydrazone (2), and
di(5-diethylamino salicylaldehyde) hydrazide (3) (Fig. 1). We
also investigated the recognition ability of these compounds to

dx.doi.org/10.1016/j.snb.2012.12.043
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:yincx@sxu.edu.cn
mailto:zhenganm@wipm.ac.cn
dx.doi.org/10.1016/j.snb.2012.12.043
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Fig. 1. The structure (top) and thermal ellipso

ecognize copper using UV–visible (UV–vis) and fluorescence spec-
roscopies. Moreover, combinations of the electrospray ionization

ass spectrometry (ESI-MS) and theoretical calculation were used
o clarify the recognition process involved with these species.
n the basis of our studies, it is demonstrated that, as probes

or copper, there are significant differences in ability between
hese three compounds, despite their similar structure. For exam-
le, 1 as a UV–vis probe shows markedly different results from
he other probes tested, both in terms of UV–vis and fluores-
ence probes. Both 2 and 3 act as fluorescence on-off probes;
owever, one distinguishing feature of 3 is that when it is in
he anti configuration, upon meeting with Cu2+ it first trans-
orms into the syn configuration and then coordinates with Cu2+,
onsequently resulting in fluorescence quenching. In addition,
ioimaging was carried out with the 2-Cu2+ complex because it
xhibits anion-induced fluorescence enhancement with a selection
f anions.

. Materials and methods

.1. Materials

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
as purchased from Sigma–Aldrich (St. Louis, MO). Sodium hydrox-
de solution (0.1 mol/L) was added to aqueous HEPES (10 mmol/L)
o adjust the pH to 7.0. Cationic salts were purchased from Shanghai
xperiment Reagent Co., Ltd., China. All other chemicals used were
f analytical grade.
probes are drawn at the 50% probability level.

2.2. Instruments

A pH meter (Mettler Toledo, Switzerland) was  used to deter-
mine the pH. Ultraviolet–visible (UV–vis) spectra were recorded
on a Cary 50 Bio UV-Vis spectrophotometer. Fluorescence spectra
were measured on Cary Eclipse fluorescence spectrophotome-
ter. A PO-120 quartz cuvette (10 mm)  was  purchased from
Shanghai Huamei Experiment Instrument Plants, China. 1H NMR,
13C NMR  spectra were recorded on a Bruker AVANCE-300 MHz
and 75 MHz  NMR  spectrometer, respectively (Bruker, Billerica,
MA). Electron bombard ionization mass spectrometry (EI-MS)
was measured with GCT-MS (Waters) instrument. ESI was mea-
sured with an LTQ-MS (Thermo) instrument. The ability of
2-Cu2+ reacting to anion in the living cells was  also evaluated
by laser confocal fluorescence imaging using an Leica TCS SP5
laser scanning microscope. The yellow single crystals of 1, 2,
and 3 were mounted on a glass fiber for data collection. Cell
constants and an orientation matrix for data collection were
obtained by least-squares refinement of diffraction data from
reflections within 1.00–25.05◦, 1.00–25.05◦, and 0.99–27.46◦, using
a Bruker SMART APEX CCD automatic diffractometer. Data were
collected at 296 K using Mo  K� radiation (� = 0.710713 Å) and
the �-scan technique, and corrected for the Lorentz and polar-
ization effects (SADABS) [49]. The structures were solved by

direct methods (SHELX97) [50], and subsequent difference Fourier
maps were inspected and then refined in F2 using a full-matrix
least-squares procedure and anisotropic displacement parame-
ters.
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Fig. 2. Optical density two-dimensional graph of the three probes (a), (b), and (c) at
500 nm (1), 430 nm (2), 454 nm (3), respectively upon the addition of several metal
ions (including Cu2+, Cu+, Ca2+, Fe2+, Zn2+, Ni2+, Bi3+, Co2+, VO2+, Mn2+, Ru3+, Cd2+, Pb2+,
Ag+, La3+, Ce4+, Yb3+, Cr2+, Er3+, Mg2+, Sn2+, Al3+, Nd3+, Zr4+, K+,  Sm3+, Fe3+, Eu3+). Inset:
a  color change photograph for Cu2+ and the other metal ions. (For interpretation of
the  references to color in this figure legend, the reader is referred to the web version
Scheme 1. The synthesis of the compounds.

.3. Preparation of 1, 2, and 3

The synthesis of compounds 1, 2, and 3 are summarized in
cheme 1. 1 and 2 were synthesized by a one-step reaction
etween fluorescein hydrazine and either of 5-nitrosalicylaldehyde
for 1), 5-diethylaminosalicylaldehyde (for 2) in methanol con-
aining acetic acid. 0.167 g (1 mmol) 5-nitrosalicylaldehyde (for 1)
r 0.193 g (1 mmol) 5-diethylaminosalicylaldehyde (for 2) were
dded to 0.35 g (1 mmol) of fluorescein hydrazine dissolved in 20 ml
f methanol and the reaction solution refluxed in an oil bath for 2 h.

 white solid appeared which was then filtered from each solution.
ach crude product was recrystallized in CH3OH and petroleum
ther (v/v, 1/1) to give 5-nitrosalicylaldehyde fluorescein hydra-
one (1) or 5-diethylaminosalicylaldehyde fluorescein hydrazone
2) as a yellow powder in 60%, and 65% yields, respectively (Fig. S1).
n H2O/CH3CH2OH solution containing the product was allowed

o evaporate slowly at room temperature for several days, and
he yellow crystals that subsequently formed were suitable for X-
ay crystallography formed. 1: mp  385 ◦C; FT-IR (KBr, cm−1): 3388

 OH), 3092 (Ar-H), 1696 (C O), 1630 (C N), 1262 (C O); 1H NMR
300 MHz, 25 ◦C, DMSO-d6): ı 11.61 (s, 1H), 9.92 (bs, 2H), 9.05
s, N C H, 1H), 8.30 (d, 1H), 8.06 (d, 1H, J = 9.1 Hz), 7.94 (m,  1H,

 = 6.7 Hz), 7.64 (t, 2H, J = 7.2 Hz), 7.13 (d, 1H, J = 6.8 Hz), 6.95(d, 1H,
 = 9.0 Hz), 6.66 (bs, 2H), 6.49(d, 4H, J = 9.9 Hz); 13C NMR  (75 MHz,
MSO-d6): ı 171.48, 169.85, 166.40, 159.80, 158.33, 151.62, 147.63,
42.04, 136.89, 135.57, 134.45, 131.48, 131.20, 130.20, 128.21,
26.55, 124.64, 120.20, 117.09, 110.26, 72.88; EI-MS m/z 495 [1]+;
lemental analysis (calcd. %) for C27H17N3O7: C, 65.45; H, 3.46; N,
.48; Found: C, 65.48; H, 3.44, N, 8.54; Crystal data for C27H17N3O7:
rystal size: 0.30 × 0.20 × 0.20, monoclinic, space group P21/n (No.
1). a = 11.393(2) Å, b = 15.307(3) Å, c = 14.354(3) Å,  ̌ = 112.338◦,

 = 2315.4(8) Å3, Z = 4, T = 296 K, �max = 25.05◦, 12,799 reflections
easured, 4097 unique (Rint = 0.0707). Final residual for 338

arameters and 4097 reflections with I > 2�(I): R1 = 0.0500,
R2 = 0.0677 and GOF = 1.265 (Fig. S2).

2: mp  325 ◦C; FT-IR (KBr, cm−1): 3317 ( OH), 3072 (Ar-H), 2971
C H, CH3), 2930 (C H, CH2), 1696 (C O), 1632 (C N), 1262 (C O);
H NMR  (300 MHz, 25 ◦C, DMSO-d6): ı 10.38 (s, 1H), 9.87 (bs, 2H),
.95 (s, N C H, 1H), 7.83 (d, 1H), 7.56 (d, 2H), 7.08 (m,  1H), 6.97 (t,
H, J = 8.3 Hz), 6.58 (d, 2H), 6.43(d, 4H, J = 8.2 Hz), 6.13 (bs, 1H), 5.91
d, 1H), 2.04 (m,  4H), 0.99 (m,  6H); 13C NMR  (75 MHz, DMSO-d6):

 159.30, 158.20, 154.43, 151.84, 150.12, 149.66, 133.22, 131.69,
29.14, 128.73, 127.81, 123.38, 122.54, 112.06, 109.23, 105.87,
03.44, 102.03, 96.93, 64.87, 43.44, 12.06; EI-MS m/z 521 [2]+; Ele-
ental analysis (calcd. %) for C31H27N3O5: C, 71.39; H, 5.22; N,

.06; Found: C, 71.38; H, 5.25, N, 8.04; Crystal data for C35H31N5O5:

rystal size: 0.30 × 0.20 × 0.20, monoclinic, space group P21/c (No.
4). a = 18.555(7) Å, b = 10.094(4) Å, c = 17.258(7) Å,  ̌ = 97.832(7)◦,

 = 3202(2) Å3, Z = 4, T = 296 K, �max = 25.05◦, 33,239 reflections
of  the article.)

measured, 5662 unique (Rint = 0.0904). Final residual for 365
parameters and 5662 reflections with I > 2�(I): R1 = 0.0899,
wR2 = 0.2902 and GOF = 1.029 (Fig. S3).

3 was synthesized by a one-step reaction of 5-

diethylaminosalicylaldehyd with excess hydrazine hydrate in
ethanol, in accordance with the procedure reported in the litera-
ture [51]. An excessive hydrazine hydrate (85%, 1.2 mL)  was added
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ig. 3. Absorption spectral changes of three probes in 10 mM HEPES at pH 7.0 as an
–16,  and 0–9 �M,  respectively; each spectrum was recorded 30 s after Cu2+ additi
eferences to color in this figure legend, the reader is referred to the web version of

o a 0.193 g (1 mmol) of di(5-diethylamino salicylaldehyde) that
ad been dissolved in 20 ml  of ethanol. The reaction solution was
hen refluxed in an oil bath for 8 h and a brown oily product was
btained by evacuating the ethanol under reduced pressure. The
olid product was precipitated by adding water and recrystallized
rom ethanol–water to give di(5-diethylamino salicylaldehyde)
ydrazide (3) as yellow powder in 80% yield (0.15 g) (Fig. S1). An
2O/CH3CH2OH solution of 3 was allowed to evaporate slowly at

oom temperature for several days and yellow crystals that were
ormed were suitable for X-ray crystallography. mp  219–221 ◦C;
T-IR (KBr, cm−1): 3404 ( OH), 3080 (Ar-H), 2971 (C H, CH3),
930 (C H, CH2), 1585 (C C), 1630 (C N); 1H NMR (300 MHz,
5 ◦C, DMSO-d6): ı 11.48 (bs, 2H), 8.61 (bs, N C H, 2H), 7.28 (d,
r-H, 2H, J = 8.7 Hz), 6.30 (t, Ar-H, 2H, J = 9.7 Hz), 6.11 (s, t, 2H),
.08 (m,  CH2 H, 8H, J = 6.9 Hz), 1.10 (t, CH3 H, 12H, J = 6.5 Hz); 13C
MR  (75 MHz, DMSO-d6): ı 160.34, 150.58, 132.72, 106.06, 103.71,
6.70, 43.55, 38.34, 30.39, 12.23; EI-MS m/z 382 [3]+; Elemental
nalysis (calcd. %) for C22H30N4O2: C, 69.08; H, 7.91; N, 14.65;
ound: C, 69.11; H, 7.94; N, 14.64; Crystal data for C22H30N4O2:
rystal size: 0.21 × 0.18 × 0.16, monoclinic, space group P2(1)/n
No. 11). a = 11.722(2) Å, b = 6.5173(13) Å, c = 13.320(3) Å,  ̌ = 96.42◦,

 = 1011.2(3) Å3, Z = 2, T = 173 K, �max = 27.46◦, 4981 reflections
easured, 2314 unique (Rint = 0.0390). Final residual for 129

arameters and 2314 reflections with I > 2�(I): R1 = 0.0589,
R2 = 0.1427 and GOF = 1.047 (Fig. S4).

.4. UV–vis and fluorescence spectroscopies

A Cu2+ solution was prepared by dissolving copper chloride

n deionized water. Probes stock solutions were prepared in
thanol. UV–vis and fluorescence spectra were obtained in 2-[4-(2-
ydroxyethyl)-1-piperazinyl]ethanesulfonic acid, HEPES aqueous
uffer (10 mmol/L, pH 7.0) solutions. Aqueous anion solutions were

ig. 4. Fluorescence spectral changes for 2 and 3 probes upon the addition of Cu2+ in 1
espectively. Inset: color (left) and visual fluorescence (right) change photographs for 

llumination (365 nm). (For interpretation of the references to color in this figure legend, 
ous buffer upon the addition of Cu2+; Cu2+ was added gradually with [Cu2+] = 0–25,
et: a color change photograph for Cu2+ and three probes. (For interpretation of the
rticle.)

also prepared using deionized water. Fluorescence measurements
were carried out with a slit width of 5 nm.

2.5. Computational methods

All calculations reported in this work were performed using
Gaussian 09 suite of programs. Ground-state geometries and elec-
tron structures of the complexes were optimized by means of the
density functional theory (DFT) using the B3LYP/6-311++G (d,p)
basis set. Time-dependent DFT (TD-DFT) calculations were used to
determine optical properties of the complexes based on their opti-
mized ground-state geometries. Geometrical optimization for the
Cu2+-addition products were performed using the UB3LYP func-
tional combined with the 6-311+G(d,p) basic set for C, H, N and F
atoms and the LANL2DZ basis set for the Cu atoms.

3. Results and discussion

3.1. Selectivity over metal ions

The effect of a wide range of environmentally and physiolog-
ically active metal ions was  investigated for each of compounds
1, 2, and 3 using the UV–vis spectra of solutions containing these
compounds and the metal ion (100 equiv.) in HEPES aqueous buffer
(10 mmol/L, pH 7.0). The results showed that whereas metal ions
such as Cu+ (sodium ascorbate as astabilizer), Ca2+, Fe2+, Zn2+, Ni2+,
Bi3+, Co2+, VO2+, Mn2+, Ru3+, Cd2+, Pb2+, Ag+, La3+, Ce4+, Yb3+, Cr2+,
Er3+, Mg2+, Sn2+, Al3+, Nd3+, Zr4+, K+, Sm3+, Fe3+ and Eu3+ do not
result in any apparent changes in absorption peaks, there is notable

change when Cu2+ is involved. Fig. 2 shows that when Cu2+ is added,
strong new absorption peaks appear at 500, 430, or 454 nm for
probe 1, 2, or 3, respectively. We  also note that the color of the
solution changes from a light yellow to an orange yellow.

0 mM HEPES at pH 7.0 as an aqueous buffer with [Cu2+] = 0–0.18 and 0–0.5 �M,
probes upon the addition of Cu2+ in a HEPES (pH 7.0) buffer solution under UV
the reader is referred to the web  version of the article.)
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Fig. 5. The proposed structures organized by the Cu2

.2. UV–vis spectra of detecting Cu2+

A detailed investigation was carried out into the ability of the
hree compounds to recognize Cu2+. Fig. 3 (left) shows that a reg-
lar change in the UV–visible spectrum can be observed when the
u2+ solution is added to the HEPES buffer (10 mM,  pH 7.0) contain-

ng 1 (25 �mol/L). With an increase in the Cu2+ concentration, new
bsorption peaks appear at 386 and 500 nm,  and A386,500 nm grad-
ally increases with isosbestic point at 322 and 350 nm,  indicating
hat there has been formation of a new complex. From the concen-
ration of Cu2+, the stoichiometric relationship between the probe
nd Cu2+ was found to be 1:1 based on the change in absorbance
t 500 nm.  Fig. 3 (middle) shows that there is a change in the
V–visible spectrum when the Cu2+ solution is added to the HEPES
uffer (10 m mol/L, pH 7.0) containing 2 (16 �mol/L). With an

ncrease in the Cu2+ concentration, a new absorption peak appears
t 430 nm and A430 nm gradually increases with an isosbestic point
ormed at 404 nm.  The stoichiometric relationship between the
robe and Cu2+ was found to be 1:1 based on the change in
bsorbance at 430 nm.  Fig. 3 (right) shows the UV–vis spectra
btained when the solution of Cu2+ was titrated into the buffer of

 (9 �mol/L). Upon the addition of Cu2+, the maximum absorption
eak gradually shifted from light yellow (�max = 418 nm)  to orange
ellow (�max = 454 nm). The stoichiometric relationship between
he probe and Cu2+ was  found to be 1:1. We  also studied the ability
f each compound to detect Cu2+ in the presence of several metal
ons. Fig. S5 shows that the other ions did not interfere with the
etermination of Cu2+.

.3. pH dependence

The pH range for the determination of Cu2+ was  also studied. For
robe 1, no absorption peak at 500 nm was induced by Cu2+ when
he solution pH was between 2 and 6. However, probe 1 shows a
ood response to Cu2+ in the pH range pH 7–12. Therefore, physio-

ogical acidity (pH 7.0) was selected for further investigation. Free
robe 2 shows absorption at 500 nm for pH 12 and 13, and it also
as no fluorescent emission when pH value is 2, 12, or 13. Simi-

ar to 1, probe 2 illustrates a good response to Cu2+ in the pH range
when it coordinates with probes to form complexes.

7–10, with the result that pH 7.0 was  also selected for further study
with this probe. Using free probe 3, the absorption peak shifts when
the pH is 3, 4, 12, or 13 and there is fluorescence quenching at pH
2, 3, 12, or 13. When the solution pH is 3, 5, or 6, Cu2+ induced
a fluorescence intensity for probe 3 such that there was  either no
quenching or only partial quenching. Therefore, the pH range of
7–10 is effective for this probe and neutral pH was used for further
studies (Fig. S6).

3.4. Time-dependence in the detection process of Cu2+

Time-dependent variations in the UV–vis of 1, 2, and 3 were
monitored in the presence of 10 equiv. of Cu2+. The kinetic study
showed that the reaction was  complete within 15, 5, and 3 s for
Cu2+ with 1, 2, and 3, respectively, thus indicating that these probes
react very rapidly with Cu2+ under the experimental conditions
considered (Fig. S7).

3.5. Fluorescence spectra

The fluorescence spectra of each of the probes with an increased
concentration of Cu2+ in HEPES buffer are displayed in Fig. 4. The
addition of Cu2+ resulted in no variation to the fluorescence spectra
of 1. However, the addition of Cu2+ did lead to fluorescence quench-
ing for remaining two probes (2: �ex = 382 nm and �em = 520 nm;
3: �ex = 425 nm and �em = 524 nm). Fig. S8 shows the fluorescence
changes that the probes undergo upon the addition of various metal
ions, including Cu+ (sodium ascorbate as astabilizer), Ca2+, Fe2+,
Zn2+, Ni2+, Bi3+, Co2+, VO2+, Mn2+, Ru3+, Cd2+, Pb2+, Ag+, La3+, Ce4+,
Yb3+, Cr2+, Er3+, Mg2+, Sn2+, Al3+, Nd3+, Zr4+, K+, Sm3+, Fe3+ and
Eu3+ in HEPES (10 mmol/L, pH 7.0). Unlike with Cu2+, these other
metal ions listed induced no change to the fluorescence emission
properties under the same conditions besides.

3.6. Proposed mechanism
The proposed mechanisms of detection and the structures of the
probes, both with and without the addition of Cu2+, are shown in
Fig. 5. Probe 1, which exhibits strong intramolecular charge transfer
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Fig. 6. (a) Molecular surfaces of the three 

ICT), is itself nonfluorescent, and the 1-Cu2+ adduct remains non-
uorescent because of the paramagnetism effect from spin–orbit
oupling of the Cu2+ (Fig. S9). Mass spectrometry analysis of a
roduct obtained from the reaction of 1 with Cu2+ in CH3OH

hows binding between 1 and Cu2+, a peak at m/z = 574.08, cor-
esponding to [1-Cu2+-H2O+H]+, is clearly observed (see Fig. S10).
robe 2 exhibits strong fluorescence in its natural form. How-
ver, though the ring is open after coordination with Cu2+, the
s; (b) molecular surfaces of DDEASHZ-Cu.

paramagnetic effect from spin-orbit coupling of the Cu2+ induces
fluorescence quenching (Fig. S11). A peak at m/z = 623.11 corre-
sponds to [2-Cu(II)-H2O+Na]+ (Fig. S12). The complexes discussed
above involving the ligands and copper ion are similar to forms

reported previously [52–56].  Free probe 3 is in the anti configu-
ration but upon encountering the Cu2+ it first transforms into the
syn configuration before coordinating to the Cu2+, resulting in fluo-
rescence quenching (Fig. S13). From ESI-MS, a peak at m/z  = 466.14
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Table  1
Calculated TD-DFT excitation properties and experimental �.

� (nm) (eV) Dominant excitations

Theory Exp

FHNS 333 334
H − 1 → L + 1 (0.48822)
H − 2 → L (0.33313)
H → L + 1 (0.31531)

FHNS-Cu
381 386

H − 2 � → L � (0.52149)
H − 2 � → L � (0.36026)
H − 2 � → L + 1 � (0.53653)

503 500
H − 2 � → L � (0.64491)
H − 2 � → L + 1 � (0.66885)

FHDEAS 392 384 H → L (0.70017)

FHDEAS-Cu 424 432
H � → L + 1 � (0.34363)
H − 2 � → 156 L + 1 (0.33687)
H � → L + 2 � (0.42211)

DDEASHZ 401 417 H → L (0.70317)

DDEASHZ-Cu 444 457

H � → L � (0.45366)
H − 11 � → L � (0.38095)
H − 4 � → L � (0.41407)
H � → L + 1 � (0.46609)
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 and L denote the HOMO and LUMO, respectively and data in parentheses are
oefficient of the wave function for each excitation. And � and � denote � and �
lections orbital of the Cu2+-products.

larified the structure that results from coordination between 3 and
u2+ (Fig. S14), where the Cu2+ is coordinated by N and O atoms of

 [57].

.7. Theoretical predictions

Theoretical calculations were explored to further study the
ptical properties of the probes and their Cu2+-addition prod-
cts. As shown in Table 1, the TD-DFT calculations reveal that
he main adsorption peaks for the three probes are 333 nm (1),
92 nm (2), and 401 nm (3), in close agreement with the exper-
mentally observed adsorption spectra (as shown in Fig. 3). The
ain absorption bands in 2 (392 nm)  and 3 (401 nm)  originate from

he highest occupied molecular orbital (HOMO) → the lowest unoc-
upied molecular orbital LUMO transitions. However, the 333 nm

ig. 7. Confocal fluorescence images in HepG2 cells. (A) Fluorescence image of HepG2 c
0  �M 2 for 30 min  at 37 ◦C and then incubated with 10 �M CuCl2 for 30 min  at 37 ◦C. (C)

ncubated with Na2S (20 �M).
 B 177 (2013) 1189– 1197 1195

adsorption peak of 1 originates from (HOMO−1) → (LUMO+1),
(HOMO−2) → LUMO, and HOMO → (LUMO+1) monoelectronic
excitations (see Table 1). On the basis of the molecular orbitals
(Fig. 6), the electron density can be said to be mainly located on
the same part of the HOMO and LUMO for 2 and 3, but on different
parts of the HOMO and LUMO for 1. Such different characteristics
of the calculated molecular orbitals demonstrate that 1 possesses
a stronger ICT than 2 and 3. It is well known that the fluorogenic
process can be facilitated by the ICT mechanism [58–60].  Therefore,
the different ICT processes in evidence for the three probes result in
strong fluorescence emissions for 2 and 3 and weaker fluorescence
emission for 1, in accordance with the results determined herein
by our experiment.

For the Cu2+-addition products of the three probes, the adsorp-
tion peak predicted by the theoretical methods is red-shifted
compared with those of the independent probes (Table 1), which is
in good agreement with the experimental observations. For exam-
ple, upon the addition of Cu2+ to 3, the maximum absorption peak
was gradually shifted from 401 nm to 444 nm.  Based on the calcu-
lated molecular orbitals (Fig. 6), the conjugated system is broken
with the Cu-products and this change will lead to a strong ICT pro-
cess in the Cu-product. This can therefore explain the fluorescence
quenching of the Cu-addition products that is witnessed experi-
mentally.

3.8. Detection range

To investigate the detection limit of the probes for Cu2+,
1 (25 �mol/L) was  treated with various concentrations of Cu2+

(0–25 �mol/L) and the absorbance intensity at 500 nm was plot-
ted as a function of Cu2+ concentration (Fig. S15). The absorbance
intensity of 1 is linearly proportional to the Cu2+ concentration,
and a concentration of Cu2+ as low as 1.89 �mol/L can be detected
using 1. In a similar procedure, 2 (0.1875 �mol/L) was treated with
various concentrations of Cu2+ (0–9.375 �mol/L) and the emission
intensity at 520 nm plotted as a function of the Cu2+ concentra-

tion. From this it can be seen that a concentration of Cu2+ as low
as 0.11 �mol/L can be detected using 2. Similarly, the detection
limit was  estimated to be less than 0.011 �mol/L for 3. These detec-
tion limits indicate that fluorescence probes 2 and 3 show a high

ells with adding 2 (10 �M). (B) Fluorescence image of HepG2 cells incubated with
 after (B), then incubated with Na2S (10 �M)  for 30 min at 37 ◦C. (D) after (B), then
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ensitivity toward Cu2+ that is comparable to the UV–vis probe 1
hemosensor.

.9. Their application in anion biomaging

It is well known that chemosensor reversibility is required for
euse. Addition of P2O7

4− or C2O4
2− to the 1-Cu2+ complex in HEPES

uffer (10 mmol/L, pH 7.0) results in the spectrum of 1 revert-
ng to that of its original pre-complex state. Furthermore, when
he concentrations of P2O7

4− or C2O4
2− are increased, the spectra

enew gradually the spectra of free 1. Simultaneously, the solution
hanges color from orange yellow to a light shade of yellow. For
, in addition to P2O7

4− and C2O4
2−, Cys, S2O3

2−, S2−, and citrate
an play a similar role to that described. However, the addition of
2O7

4− and C2O4
2− results in a partial release of 3 from its complex

Fig. S16). Anions with a physiological function, including F−, Cl−,
r−, I−, acetate (AcO−), SCN−, NO3

−, SO4
2−, CO3

2−, C2O4
2−, PO4

3−,
nd CN−, were also investigated but their effect on the UV–vis spec-
ra was not as evident as for P2O7

4−/C2O4
2−. These results indicate

hat 2 is an optimal probe for Cu2+ because it is easily regenerated.
The 2-Cu2+ complex exhibits an anion-induced increase in flu-

rescence, which thus allows for the possibility of using it in
ioimaging. The ability of 2-Cu2+ to react with anions in living cells
as also evaluated. Under selective excitation at 405 nm,  HepG2

ells showed green fluorescence after they were incubated with
0 �mol/L of 2 for 30 min  at 37 ◦C, and with 10 �mol/L of S2− (as

 delegate) added for the final 30 min  (Fig. 7C). HepG2 cells incu-
ated with probe 2 for 30 min  at 37 ◦C with 20 �mol/L of S2− added
or the final 30 min  showed stronger green fluorescence (Fig. 7D).
hese cell experiments show that 2 can permeate through cell
embranes.

. Conclusions

Three compounds, namely 5-nitrosalicylaldehyde fluorescein
ydrazone (1), 5-diethylaminosalicylaldehyde fluorescein hydra-
one (2), and di(5-diethylamino salicylaldehyde) hydrazide (3),
ere successfully synthesized and characterized. Their abilities to

ecognize copper were investigated using UV–vis and fluorescence
pectroscopies. The results showed that the recognition processes
or each of the probes have some differences despite their similar
tructure, with the conclusion that probe 2 is an optimal probe for
u2+. More importantly, the optical properties of the probes and
heir Cu2+-addition products were studied using DFT calculations
nd the fluorescence quenching mechanism revealed. Application
n bioimaging was  illustrated and anions can induce 2-Cu2+ to show
trong fluorescence in living cells. This work will therefore prove
seful for the future design and application of copper chemosen-
ors.
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