pubs.acs.org/JPCA

Bridging Gold in Electron-Deficient $Al_2Au_n^{0/-}$ and $BAlAu_n^{0/-}$ (n = 1-3) Clusters

Wen-Zhi Yao,*^{,†} Bing-Tao Liu,[†] Zhang-Hui Lu,[‡] and Si-Dian Li[§]

[†]Department of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou, 450011, China

[‡]College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China

[§]Institute of Molecular Science, Shanxi University, Taiyuan, 030001, China

ABSTRACT: The geometrical and electronic structures of the electron-deficient dialuminum aurides $Al_2Au_n^{0/-}$ and hybrid boron–aluminum aurides $BAlAu_n^{0/-}$ (n = 1-3) are systematically investigated based on the density and wave function theories. Ab initio theoretical evidence strongly suggests that bridging gold atoms exist in the ground states of $C_{2\nu}$ Al_2Au^- (${}^{3}B_1$), $C_{2\nu}$ Al_2Au (${}^{2}B_1$), $C_{2\nu}$ $Al_2Au_2^-$ (${}^{2}A_1$), $C_{2\nu}$ Al_2Au_2 (${}^{1}A_1$), C_s $Al_2Au_3^-$ (${}^{1}A'$), and D_{3h} Al_2Au_3 (${}^{2}A_1$), which prove to possess an Al–Au–Al τ bond. For $BAlAu_n^{0/-}$ (n = 1-3) mixed clusters, bridging B–Au–Al units only exist in C_s $BAlAu_3^-$ (${}^{1}A'$) and C_s $BAlAu_3$ (${}^{2}A'$), whereas C_s $BAlAu^-$ (${}^{3}A''$), C_s BAlAu (${}^{2}A''$), C_s $BAlAu_2^-$ (${}^{2}A'$), and C_s $BAlAu_2^-$ (${}^{1}A'$) do not possess a bridging gold, as demonstrated by the fact that B–Al

and B–Au exhibit significantly stronger electronic interaction than Al–Au in the same clusters. Orbital analyses indicate that Au 6s contributes approximately 98%–99% to the Au-based orbital in these Al–Au–Al/B–Au–Al interactions, whereas Au 5d contributes 1%-2%. The adiabatic and vertical detachment energies of Al₂Au_n⁻ (n = 1-3) are calculated to facilitate future experimental characterizations. The results obtained in this work establish an interesting τ bonding model (Al–Au–Al/B–Au–Al) for electron-deficient systems in which Au 6s plays a major factor.

1. INTRODUCTION

Gold significantly differs from copper and silver in both physical and chemical properties mainly because of its strong relativistic effects: the stabilization and contraction of the 6s shell and the concomitant destabilization and expansion of the 5d.^{1,2} These effects give rise to the high electronic affinity of Au, which behaves like halogens in alkaline and transition metal aurides.¹⁻⁴ Au also possesses the highest electronegativity (2.4) among all metals, which is comparable with that (2.2) of H. The surprising discovery of H/AuPR₃ analogy⁵ and, more recently, H/Au analogy in SiAu₄^{0/-,6} Si₂Au_x^{0/-} (x = 2, 4),⁷ B₇Au₂^{0/-,8} and B_nAu_n²⁻ (n = 5-12)⁹ well supports the similarities between hydrogen and gold in terms of chemical bonding. Relativistic pseudopotential calculations on XAu_n^{m+} containing Au ligands (X = B–N, Al–S, n = 4-6) are also reported.¹⁰ Our group recently present an ab initio investigation on diboron aurides $B_2Au_n^{0/-}$ (n = 1, 3, 5) and their $B_2H_mAu_n^-$ mixed analogues (m + n = 3, 5),¹¹ monoboron aurides $BAu_n^{0/-}$ (n = 1-4) series,¹² and monoaluminum aurides $AlAu_n^{0/-}$ (n = 2-4).¹³ These studies also confirmed the H/Au isolobal relationship and revealed a clear structural link between gold-containing clusters X_mAu_n and the corresponding hydride molecules X_mH_n. In most cases, gold serves as terminal atoms in conventional two-center two-electron (2c-2e) bonds in the reported compounds. However, in disilicon aurides

Si₂Au_x^{0/-} (x = 2, 4)⁷ and diboron aurides B₂Au_n^{0/-} (n = 1, 3, 5),¹¹ Au serves as bridging atoms in Si–Au–Si and B–Au–B three-center two-electron (3c-2e) interactions (τ orbitals). Given the fact that the H-bridged Al-H-Al unit is of essential importance in the well-documented dialane,¹⁴ we try to determine whether Au can replace H to form Au-bridged Al-Au-Al in electron-deficient systems which are similar to diboron aurides $B_2Au_n^{0/-}$ (n = 1, 3, 5). Starting from the smallest aurodialane Al₂Au and the mixed analogues BAlAu, we performed a systematic ab initio investigation on $Al_2Au_n^{0/-}$ and BAlAu_n^{0/-} (n = 1-3) in this work. Theoretical evidence based on both the density functional theory (DFT) and wave function theory strongly suggests that the ground-state $Al_2Au_n^{0/-}$ (n = 1-3) and $BAlAu_3^{0/-}$ contain bridging gold (Au_b) atoms in Al–Au–Al and B–Au–Al τ bonds. Al₂Au_n (n =1-3) neutrals form Al-Au-Al bridging interactions similar to that in Al₂H_n (n = 1-3), whereas BAlAu^{0/-} and BAlAu^{0/-} do not possess bridging gold in their ground-state structures. The adiabatic (ADEs) and vertical electron detachment energies (VDEs) of $Al_2Au_n^{-}$ (n = 1-3) anions are calculated to aid their photoelectron spectroscopy (PES) characterizations. The

© 2013 American Chemical Society

Received:
 March 17, 2013

 Revised:
 May 29, 2013

 Published:
 May 29, 2013

Article

Figure 1. Low-lying isomers of (a) Al₂Au⁻, (b) Al₂Au₂ (c) Al₂Au₂⁻, (d) Al₂Au₂ (e) Al₂Au₃⁻, and (f) Al₂Au₃ at B3LYP, with the relative energies ΔE (eV) at B3LYP/B3LYP, MP2//MP2, and CCSD(T)//B3LYP indicated.

results achieved in this work extend the concept of bridging gold to electron-deficient bridging Al–Au–Al and B–Au–Al units and enrich the chemistry of gold, which has wide applications in homogeneous catalyses and metallorganic chemistry.⁵⁻¹⁰

2. THEORETICAL METHODS

Extensive structural searches were performed with use of the DFT-based random structure-generating program (GXYZ).¹⁵ Further structural optimizations, frequency analyses, and natural localized molecular orbital (NLMO) analyses were comparatively conducted on low-lying isomers with use of the hybrid B3LYP method¹⁶ and the second-order Møller-Plesset approach with the frozen core approximation [MP2(FC)].¹ MP2 produced similar ground-state structures and relative energy orders with B3LYP, with slightly different bond parameters. Relative energies for the lowest-lying isomers were further refined by using the coupled cluster method with triple excitations $[CCSD(T)]^{18}$ at B3LYP structures. The Stuttgart quasi-relativistic pseudopotentials and basis sets augmented with two f-type polarization functions and one gtype polarization function [Stuttgart_rsc_1997_ecp+2f1g (α (f) = 0.498, $\alpha(f) = 1.464$, and $\alpha(g) = 1.218^{-19}$ were employed for

Au with 19 valence electrons. The augmented Dunning's correlation consistent basis set of aug-cc-pvTZ²⁰ was used for B and Al throughout this work. Adiabatic detachment energies (ADEs) of the anions were calculated as the energy differences between the anions and the corresponding neutrals at their ground-state structures, whereas vertical detachment energies (VDEs) were calculated as the energy differences between the anions and neutrals at the anionic structures. Such a theoretical procedure was proven to be reliable for $\mathrm{SiAu_4}^-,~\mathrm{Si_2Au_x}^-,$ and $B_7Au_2^-$ in predicting their ground-state structures and analyzing their PES spectra.^{6–8} The low-lying isomers obtained are depicted in Figures 1 and 2 with relative energies at B3LYP, MP2, and CCSD(T)//B3LYP levels indicated. The molecular orbital (MO) images and orbital interactions of the Al-Au-Al au bonds discussed in this work are shown in Figure 3, with the natural atomic charges and Wiberg bond indexes of $Al_2Au_n^{0/-}$ (n = 1-3) tabulated in Table 1 and ADEs and VDEs of the $Al_2Au_n^{-}$ anions summarized in Table 2. All the calculations in this work were performed with use of Gaussian03.²¹

3. RESULTS AND DISCUSSION

3.1. Geometrical and Electronic Structure. We started from $Al_2Au^{0/-}$, the smallest dialuminum auride, which contains

Figure 2. Low-lying isomers of (a) BAlAu⁻, (b) BAlAu, (c) BAlAu⁻, (d) BAlAu⁻, (e) BAlAu⁻, and (f) BAlAu⁻ at B3LYP, with the relative energies ΔE (eV) at B3LYP/B3LYP, MP2//MP2, and CCSD(T)//B3LYP indicated.

a bridging gold. As shown in Figure 1, the triplet Au-bridged $C_{2\nu}$ Al₂Au⁻ (³B₁) (1) is indeed the ground state of Al₂Au⁻: it lies 0.21 and 0.57 eV lower than the singlet Au-bridged $C_{2\nu}$ Al_2Au^- (1A_1) (2) and the triplet linear $C_{\alpha\nu}$ Al_2Au^- ($^3\Sigma_g^-$) (3) at CCSD(T), respectively. For neutral structures, the doublet Au-bridged $C_{2\nu}$ Al₂Au (²B₁) (4) (Al(μ -Au)Al), which possesses the same geometry as the V-shaped Al₂H (Al(μ -H)Al),¹⁴ proves to be a local minimum lying 0.72 eV higher than the linear $C_{\infty\nu}$ Al₂Au (5) at CCSD(T) level. The anion Al₂Au₂⁻ was found to prefer a di-Au-bridged $[Al(\mu-Au_2)Al]^-$ structure with a doublet electronic structure. The ground state of the off-planed di-Au-bridged $C_{2\nu}$ Al₂Au₂⁻ (²A') (6) is proven to be more stable than the Y-shaped $C_{2\nu}$ Al₂Au₂⁻ (²B₁) (7) and the quadruplet linear $D_{\infty h}$ Al₂Au₂⁻ (⁴Σ_g⁻) (8) (which has two small imaginary frequencies at 18.34i and 17.30i cm⁻¹ at B3LYP) at the CCSD(T) level, respectively. For the neutral structure, similar to Al_2H_2 favors a di-H-bridged $[Al(\mu-H_2)Al]$ structure, the ground structure of Al_2Au_2 is the di-Au-bridged $C_{2\nu}$ Al_2Au_2 $({}^{1}A_{1})$ (9), which lies 2.03 eV lower than the Y-shaped $C_{2\nu}$ Al_2Au_2 (¹A₁) (10) at the CCSD(T) level. Adding one Au terminally to an Al atom in $C_{2\nu}$ Al₂Au₂⁻ ([Al(μ -Au₂)Al]⁻) (²A₁)

(6) produces the ground state of di-Au-bridged $C_s \text{Al}_2\text{Au}_3^-$ [Al(μ -Au}_2)Al]Au⁻ (¹A') (11), which proves to be 0.16, 0.87, and 2.23 eV more stable than the tri-Au-bridged D_{3h} Al}2Au_3⁻ (¹A₁) (12) (although 0.22 eV less stable than C_s 11 at MP2), the distorted chain $C_{2\nu}$ Al}2Au_3⁻ (¹A₁) (13), and the T-shaped $C_{2\nu}$ Al}2Au_3⁻ (¹A₁) (14) at the CCSD(T) level, respectively. Similar to the tri-H-bridged D_{3h} Al}2H_3 ([Al(μ -H_3)Al]),¹⁴ Al}2Au_3 neutral favors the tri-Au-bridged [Al(μ -Au_3)Al] structure D_{3h} Al}2Au_3 (²A₁) (15) over C_s Al}2Au_3 (²A') (16) and C_2 Al}2Au_3 (²B) (17) by 0.43 and 1.14 eV at the CCSD(T) level, respectively.

Article

The hybrid boron–aluminum monoauride was proven to have the ground states of C_s BAuAl⁻(³A'') (18) for anion and C_s BAuAl (²A'') (21) for neutral after the calculation of several isomers (Figure 2). The relative energy difference of the anion isomers 19 and 20 is 0.02 and 0.83 eV, respectively, and 0.23 and 1.24 eV for the neutral isomers 22 and 23 at the CCSD(T) level. Evidently, at the CCSD(T) level, the V-shaped [BAuAl]^{0/-} are more stable than the linear isomers [AlBAu]^{0/-} (although the V-shaped [BAuAl]^{0/-} are

Figure 3. 3D views and orbital interactions of $3c-2e \tau$ bonds in $Al_2Au^-(1)$, $Al_2Au(4)$, $Al_2Au_2^-(6)$, $Al_2Au_2(9)$, $Al_2Au_3^-(11)$, $Al_2Au_3(15)$, $BAlAu_3^-(28)$, and $BAlAu_3(32)$ discussed in this work.

Table 2. Calculated ADEs (eVs) and VDEs (eV) of the Dialuminum Auride Anions at B3LYP and CCSD(T)//B3LYP Levels^{*a*}

	AI	DE	VDE		
	B3LYP	CCSD(T)	B3LYP	CCSD(T)	
$C_{2\nu}$ Al ₂ Au ⁻ (³ B ₁)	$1.47 (^{2}B_{1})$	$1.49 (^{2}B_{1})$	$1.49 (^{2}B_{1})$	$1.54 (^{2}B_{1})$	
$C_{2\nu} \text{ Al}_2 \text{Au}_2^- (^2\text{A}_1)$	$1.45 ({}^{1}A_{1})$	$1.40 ({}^{1}A_{1})$	1.47 (¹ A)	1.46 (¹ A)	
$C_s \operatorname{Al}_2\operatorname{Au}_3^-({}^1\operatorname{A}')$	$2.15 (^{2}A_{1})$	$1.97 (^{2}A_{1})$	2.70 (² A')	2.73 (² A')	
^a ADEs of the ani	ons are equiv	valent to the	electron affin	nities of the	
corresponding neu	ıtrals.				

less stable than the linear isomers [AlBAu]^{0/-} at the DFT level (Figure 2)). C_s BAuAl (²A") (21) has a different geometry from the ground-state linear AlBH.²² For hybrid boron-aluminum diaurides, the $C_s \text{ BAlAu}_2^-$ (²A') (24) is 1.36 eV more stable than the Y-shaped BAlAu}_2^- (25) (²A'), whereas the $C_s \text{ BAlAu}_2$ $(^{1}A')$ (26) lies 2.25 eV lower than the distorted Y-shaped $BAlAu_2$ (27) (¹A') at the CCSD(T) level. Similar to the structure mode of $C_s \operatorname{Al}_2\operatorname{Au}_3^- [\operatorname{Al}(\mu-\operatorname{Au}_2)\operatorname{Al}]\operatorname{Au}^- (^1\operatorname{A}')$ (11), the di-Au-bridged $C_s [Al(\mu-Au_2)BAu]^- ({}^1A')$ (28) appears to lie 0.42, 0.44, and 0.79 eV lower than the C_{s} BAlAu₃⁻ (29), C_{1} $BAlAu_3^{-}(30)$ and $C_s BAlAu_3^{-}(31)$ at CCSD(T), respectively. The global minimum of BAlAu₃ neutral turned out to be C_s $[Al(\mu-Au_3)B]$ (²A₁) (32), which contains three B-Au-Al bridges. The di-Au-bridged C_s [Al(μ -Au₂)BAu] (²A') (33), which has the same calculated parameters as the 32 isomer, lies only slightly higher, 0.003 eV, than C_s 32 at the CCSD(T) level (although 0.18 eV lower than C_s 32 at B3LYP and 0.42 eV higher than C_s 32 at MP2).

We note that the geometry and electric structures of the dialuminum aurides $[Al_2Au_n]$ (n = 1-3) are nearly identical with those of the dialuminum hydride (Al_2H_n) molecules.¹⁴

Table 1. Calculated Natural Atomic Charges (q/|e|), Wiberg Bond Indexes (WBI), and Total Atomic Bond Orders (WBI_{Al} and WBI_{Au}) of the Au-Bridged Al₂Au_n^{0/-} and BAlAu_n⁻ Clusters at the B3LYP Level^a

	$q_{\rm Al}$	$q_{ m B}$	$q_{\rm Au(b)}$	WBI		WBI _{Al}	WBI _{Au(b)}	WBI _B
C_{2u} Al ₂ Au ⁻ (1)	-0.34	-	-0.33	Al-Al	0.98	1.51	1.05	
-20 2				Al-Au(b)	0.53			
$C_{2\mu}$ Al ₂ Au (4)	0.13		-0.27	Al-Al	0.99	1.55	1.12	
2, 2 ()				Al-Au(b)	0.56			
C_s BAlAu ⁻ (18)	0.05	-0.94	-0.10	B–Al	1.15	1.55	1.22	2.05
				B-Au	0.90			
				Al-Au(b)	0.33			
$C_{2\nu} \operatorname{Al}_{2}\operatorname{Au}_{2}^{-}(6)$	-0.22		-0.28	Al—Al	0.85	1.89	1.08	
				Al-Au(b)	0.52			
$C_{2\nu}$ Al ₂ Au ₂ (9)	0.23		-0.23	Al—Al	0.77	1.88	1.14	
				Al-Au(b)	0.55			
C_s BAlAu ₂ ⁻ (24)	0.17	-1.11	-0.03	B-Al	1.13	1.75	1.24	2.86
				B-Au(b)	0.87			
				Al-Au(b)	0.31			
$C_s \operatorname{Al}_2\operatorname{Au}_3^-(11)$	-0.10		-0.22	Al—Al′	1.08	2.32 ^b		
	-0.09			Al-Au(b)	0.54			
				Al'-Au(b)	0.53	2.90 ^c		
				Al'- Au(t)	0.76			
D_{3h} Al ₂ Au ₃ (15)	0.17		-0.12	Al—Al	0.45	1.93	1.10	
				Al-Au(b)	0.49			
C_s BAlAu ₃ ⁻ (28)	0.28	-1.32	0.02	B-Al	1.08	1.91	1.28	3.69
				B-Au	0.83			
				Al—Au	0.33			

^{*a*}Au (b) represents bridging Au atom and Al' represents the Al atom connected with terminal Au atom in $C_s Al_2Au_3^{-}(21)$. ^{*b*}For Al. ^{*c*}For Al'.

However, the geometries of the hybrid boron–aluminum aurides [BAlAu_n] (n = 1-3) are different from those of the hybrid boron–aluminum hydride (BAlH_n) molecules.²² There is very little geometry change between the ions and the neutrals of Al₂Au_n^{0/-} or BAlAu_n^{0/-} (n = 1-2), except for Al₂Au₃^{0/-} and BAlAu₃^{0/-}.

3.2. Bonding Considertion. In both $C_{2\nu}$ Al₂Au⁻ (³B₁) (1) and Al₂Au $({}^{2}B_{1})$ (4), Au 6s overlaps with one of the two halffilled π_u orbitals of Al₂ (${}^{3}\Sigma_{g}^{-}$) to form the Al–Au–Al τ interactions. The Wiberg bond orders of WBI_{Al–Au} = 0.53 in 1 and $WBI_{Al-Au} = 0.56$ in 4, respectively, well support the existence of the τ bonds in them, while the bond orders of $WBI_{Al-Al} = 0.98$ in 1 and $WBI_{Al-Al} = 0.99$ in 4 as well as the bond lengths $r_{Al-Al} = 2.68$ Å in 1 and $r_{Al-Al} = 2.65$ Å in 4 exhibit no significant changes. Detailed NLMO analyses quantitatively reveal the existence of a bridging Al–Au–Al τ bond in both $C_{2\nu}$ Al_2Au^- (1) and Al_2Au (4), as clearly shown in their 3c-2e orbital images and orbital interactions in Figure 3. With the orbital combination of $\tau_{Al-Au-Al} = 0.39(sp^{80.3})_{Al} + 0.83(sd^{0.01})_{Au}$ + $0.39(sp^{80.3})_{Al}$ and the corresponding atomic contribution of 15%Al + 70%Au + 15%Al for the τ bond in $C_{2\nu}$ Al₂Au⁻ (1), Au 6s and Au 5d contribute 98.4% and 1.3% to the Au-based orbital, respectively, whereas Al 3p and Al 3s contribute 97.7% and 1.2% to the Al-based orbital, respectively. Evidently, Au 6s and Al 3p make the main contribution to the Al-Au-Al bridging bond in $C_{2\nu}$ Al₂Au⁻, well in agreement with the qualitative discussion presented above. Compared with the composition of the B–Au–B 3c-2e bond in $C_{2\nu}$ B₂Au^{-,11} Au 6s makes a larger contribution to the Au-based orbital in $C_{2\nu}$ Al_2Au^- than in $C_{2\nu}$ B_2Au^- . However, given the strong relativistic effects of Au, the 1.3% contribution from Au 5d is not negligible. Thus, the 3c-2e bond of $C_{2\nu}$ Al₂Au⁻ can be practically approximated as $\tau_{Al-Au-Al} = 0.39(p)_{Al} + 0.83 \cdot (sd^{0.01})_{Au} + 0.39(p)_{Al}$. Similar to $C_{2\nu}$ Al₂Au⁻ (1), neutral $C_{2\nu}$ Al₂Au (4) possesses a $\tau_{Al-Au-Al}$ bond with the orbital combination of $\tau_{Al-Au-Al} = 0.40(p)_{Al} + 0.83(sd^{0.02})_{Au} + 0.40(p)_{Al}$ $0.40(p)_{Al}$

Population analysis demonstrates that the most stable structures of the hybrid boron-aluminum monoaurides Cs BAuAl^{0/-} and the dialuminum aurides $C_{2\nu}$ Al₂Au^{0/-} exhibit different bonding patterns despite the fact that they have similar structures. In other words, a bridging B-Au-Al τ bond does not exist in both C_s BAuAl⁻ (18) and C_s BAuAl (21). In C_s BAuAl⁻ (³A'') (18), the bond has a length of $r_{B-Au} = 2.06$ Å, $r_{\rm Al-Au}$ = 2.69 Å, and $r_{\rm B-Al}$ = 2.14 Å with corresponding bond orders of $WBI_{B-Au} = 0.90$, $WBI_{Al-Au} = 0.33$, and $WBI_{B-Al} =$ 1.15, respectively. Both B-Al and B-Au have considerably stronger electronic interaction than Al-Au. The atomic charges of $q_{\rm B} = -0.94$ lel, $q_{\rm Al} = 0.05$ lel, and $q_{\rm Au} = -0.10$ lel indicate that the extra electron of the anion is totally localized in the B-Au bond, thus preventing the formation of the B-Au-Al τ bonding in C_s BAuAl⁻ (18). A similar situation exists in C_s BAuAl (21).

As for di-Au-bridged $C_{2\nu}$ Al₂Au₂⁻ (**6**), its Al–Al and Al–Au bonds have bond lengths of 2.77 and 2.58 Å (Figure 1) with corresponding Wiberg bond orders of 0.85 and 0.52 (Table 1), respectively. Atomic charges of $q_{Al} = -0.22$ lel and $q_{Au} = -0.28$ l el in **6** indicate that the additional electron of the anion is distributed in the whole molecule. Detailed NLMO analyses quantitatively reveal the existence of two bridging Al–Au–Al τ bonds both in $C_{2\nu}$ Al₂Au₂⁻ (**6**) and $C_{2\nu}$ Al₂Au₂ (**9**). With the orbital combination of $\tau_{Al-Au-Al} = 0.40(p)_{Al} + 0.82(sd^{0.01})_{Au} + 0.40(p)_{Al}$ and the corresponding atomic contribution of 16%Al + 68%Au + 16%Al for the τ bond in $C_{2\nu}$ Al₂Au₂⁻ (6), Au 6s and Au 5d contribute 98.8% and 0.97% to the Au-based orbital, respectively, whereas Al 3p and Al 3s contribute 97.4% and 1.3% to the Al-based orbital, respectively. Consistent with $C_{2\nu}$ Al₂Au⁻, Au 6s and Al 3p make major contributions to the Al– Au–Al bridging bond in $C_{2\nu}$ Al₂Au₂⁻, which agrees with the qualitative discussion presented above. As a local minimum, neutral $C_{2\nu}$ Al₂Au₂ (9) possesses a 3c-2e bond $\tau_{Al-Au-Al} =$ 0.41(p)_{Al} + 0.81(sd^{0.01})_{Au} + 0.41(p)_{Ab}, which is similar to that of $C_{2\nu}$ Al₂Au₂⁻ (6).

No bridging B-Au-Al τ bond exists in both C_s BAuAl₂⁻ (24) and C_s BAuAl₂ (26), similar to the hybrid boronaluminum monoauride C_s BAuAl⁻ (18) and C_s BAuAl (21). The distance of Al-Au increased from 2.58 Å in 6 to 2.74 Å in 24, and the bond order decreased from 0.52 in 6 to 0.31 in 24, implying that 6 and 24 have different electronic structures. The B atoms in C_s BAlAu₂⁻ (²A') (24) have bond lengths of $r_{B-Au} =$ 2.10 Å and $r_{B-Al} = 2.17$ Å with corresponding bond orders of 0.87 and 1.13, respectively. The atomic charges of $q_B = -1.11$ el, $q_{Au} = -0.03$ lel, and $q_{Al} = 0.17$ lel in 24 indicate that the extra electron of the anion is totally localized in the B-Au bond and the B-Au-Al τ bonding mode does not exist in C_s BAuAl₂⁻ (24). Thus, B-Au has a significantly stronger electronic interaction than Al-Au in C_s BAuAl₂⁻ (24). As a local minimum, neutral C_s BAuAl₂⁻ (24).

The 3c-2e $\tau_{Al-Au-Al}$ bond in $C_s Al_2Au_3^{-}$ (11) possesses the orbital combination of $\tau_{Al-Au-Al} = 0.42(p)_{Al} + 0.80(sd^{0.01})Au + 0.43(p)_{Al}$. The two Al atoms in $C_s Al_2Au_3^{-}$ form an Al–Al σ bond with $r_{Al-Al} = 2.70$ Å with corresponding bond orders of 1.08 (Table 1), whereas the Au 6s¹ electron and the additional electron of the anion form the bridging interaction with $r_{Al-Au(b)} = 2.55-2.59$ Å and corresponding bond orders of 0.244 Å with a corresponding bond order of 0.76. $D_{3h} Al_2Au_3$ (15) possesses three equivalent $\tau_{Al-Au-Al}$ bonds with the orbital combination of $\tau_{Al-Au-Al} = 0.42(p)_{Al} + 0.80(sd^{0.01})_{Au} + 0.42(p)_{Al}$. Unlike the bonding pattern of BAlAu^{0/-} and BAlAu^{0/-},

Unlike the bonding pattern of BAlAu^{0/-} and BAlAu^{0/-}, BAlAu^{3/-} possess a bridging B–Au–Al τ bond in both ground states of C_s BAlAu³ (28) (¹A') and C_s BAlAu₃ (32) (²A'), which have a similar structure mode and bonding pattern as C_s Al₂Au³⁻ (11) and D_{3h} Al₂Au₃ (15). C_s [Al(μ -Au₂)BAu]⁻ (¹A') (28) with $r_{B-Al} = 2.17$ Å possesses a 3c-2e bond of $\tau_{Al-Au-Al} =$ 0.61(p)_B + 0.71(sd^{0.04})_{Au} + 0.35(p)_{Al}. As a local minimum, neutral C_s BAlAu₃ ([Al(μ -Au₃)B]) (²A') (32) possesses similar three-center interactions as C_s BAlAu³⁻ ([Al(μ -Au₂)BAu]⁻) (¹A') (28). Notably, in the orbital combinations of the bridging bonds in BAlAu^{3/0/-} clusters, Al has slightly lower orbital coefficients (0.35) and therefore less contribution to the multicenter interactions than B (0.61).

Al₂Au_n^{0/-} (n = 1-3) are proven to possess a Al–Au–Al τ bond and BAlAu₃^{0/-} was demonstrated to possess a B–Au–Al τ bond (vide supra). However, no bridging B–Au–Al τ bond exists in BAlAu_n^{0/-} (n = 1-2). Au 6s provides the main contribution to the Au-based orbital in bridging Al–Au–Al or B–Au–Al units, which reflects the relative effect of gold. In addition, B makes more contribution than Al in the orbital combinations of B–Au–Al τ bond in BAlAu₃^{0/-}. Considering the similar electronegativity of gold (2.4) and hydrogen (2.2), it is interesting to note that the atomic charges of $q_{Au} = -0.33$ to -0.12 lel in Al₂Au_n^{0/-} (n = 1-3), perhaps predicting that the isolobal analogy between Au and H exists in the [AlAu_n] series of molecules.

3.3. Electron Detachment Energies. As shown in Table 2, B3LYP and CCSD(T) methods produced consistent oneelectron detachment energies for $Al_2Au_n^-$ (n = 1-3) anions, making them possible to characterize in PES experiments. $C_{2\nu}$ Al_2Au^- (1) anion has calculated ADE = 1.49 eV and VDE = 1.54 eV at the CCSD(T)//B3LYP level, whereas $C_{2\nu}$ Al₂Au₂⁻ (6) anion has calculated ADE = 1.40 eV and VDE = 1.46 eV at the same level. The small ADE-VDE differences (0.05-0.06 eV) agree with the minor structural relaxation from the $C_{2\nu}$ anion and $C_{2\nu}$ neutral. When one electron is detached, a significant structural change occurs from $C_s \operatorname{Al}_2\operatorname{Au}_3^-(11)$ to D_{3h} Al₂Au₃ (15). This prediction agrees with the huge energy difference (0.76 eV) between the calculated ADE (1.97 eV) and VDE (2.73 eV) at the CCSD(T) level. The electron binding energies of these anions fall within the energy range of the conventional excitation laser (266 nm, 4.661 eV) in PES measurements.

4. SUMMARY

We presented a geometrical and electronic structure analysis for electron-deficient Al₂Au_n^{0/-} (n = 1-3) and BAlAu_n^{0/-} (n = 1-3) clusters at both DFT and wave function theory levels. Aluminum aurides $Al_2Au_n^{0/-}$ (n = 1-3) are predicted to possess bridging gold atoms, which are all proven to possess a Al-Au-Al τ bond, whereas only BAlAu₃^{0/-} was demonstrated to possess a B-Au-Al τ bond in hybrid boron-aluminum aurides BAlAu_n^{0/-} (n = 1-3). The neutral Al₂Au_n [Al(μ - Au_n Al] (n = 1-3) have similar geometrical and electric structures as Al_2H_n [Al(μ -H_n)Al] (n = 1-3). B has more contributions to the multicenter interactions than Al in the orbital combinations of the bridging bonds in BAlAu₃^{0/-} clusters. Detailed orbital analysis indicates that Au 6s and Au 5d respectively contribute 98%-99% and 1%-2% to the Aubased orbitals in bridging Al-Au-Al or B-Au-Al units, partially reflecting the relativistic effect of gold. B-Al and B-Au exhibit a significantly stronger electronic interaction than Al–Au in BAlAu $^{0/-}$ and BAlAu $^{0/-}$, which do not possess a bridging gold. The one-electron detachment energies of dialuminum auride clusters $Al_2Au_n^-$ (n = 1-3) with ADE (1.40 -1.97 eV) and VDE (1.46-2.73 eV) were calculated at ab initio levels, which may facilitate their future experimental characterization. Bridging gold addressed in this work provides an interesting bonding mode for AlAu_n and BAlAu_n electrondeficient systems and may aid in designing new masteries and catalysts with highly dispersed Au atoms.

AUTHOR INFORMATION

Corresponding Author

*E-mail: yaowenzhi-1982@163.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the North China University of Water Conservancy and Electric Power High-level experts Scientific Research foundation (No. 201114)

REFERENCES

(1) Pyykko, P. Angew. Chem., Int. Ed. 2002, 41, 3573 and references therein.

(2) Cotton, F. A.; Wikinson, G.; Murillo, C. A.; Bochmann, M. Advances in Inorganic Chemistry, 6th ed.; Wiley: New York, NY, 1999.

(3) Schwarz, H. Angew Chem., Int. Ed. 2003, 42, 4442 and references therein.

- (4) Gagliardi, L. J. Am. Chem. Soc. 2003, 125, 7504.
- (5) (a) Hall, K. P.; Mingos, D. M. P. Prog. Inorg. Chem. 1984, 32, 237.
- (b) Lauher, J. W.; Wald, K. J. Am. Chem. Soc. 1981, 103, 7648.
- (c) Burdett, J. K.; Eisentein, O.; Schweizer, W. B. Inorg. Chem. 1994,
- 33, 3261. (6) Kiran, B.; Li, X.; Zhai, H. J.; Cui, L. F.; Wang, L. S. Angew Chem.,
- (6) Kiran, B.; El, X.; Zhai, H. J.; Cui, L. F.; Wang, L. S. Angew Chem., Int. Ed. 2004, 43, 2125.
- (7) (a) Li, X.; Kiran, B.; Wang, L. S. J. Phys. Chem. A 2005, 109, 4366.
- (b) Kiran, B.; Li, X.; Zhai, H. J.; Wang, L. S. *J. Chem. Phys.* **2006**, *125*, 133204.
- (8) Zhai, H. J.; Wang, L. S.; Zubarev, D. Y.; Boldyrev, A. I. J. Phys. Chem. A 2006, 110, 1689.
- (9) Zubarev, D. Y.; Li, J.; Wang, L. S.; Boldyrev, A. I. *Inorg. Chem.* **2006**, *45*, 5269.
- (10) Pyykko, P.; Zhao, Y. Chem. Phys. Lett. 1991, 117, 103.
- (11) Yao, W. Z.; Li, D. Z.; Li, S. D. J. Comput. Chem. 2011, 32, 218.
- (12) Li, D. Z.; Li, S. D. Int. J. Quantum Chem. 2011, 111, 4418.
- (13) Yao, W. Z; Yao, J. B; Li, S. D. Chin. J. Struct. Chem. 2012, 31, 1549.

(14) Liu, J.; Aeschleman, J.; Rajan, L. M.; Che, C.; Ge, Q. In *Materials Issues in A Hydrogen Economy*, Jena, P., Kandalam, A., Sun, Q., Eds.; World Scientific Publishing Co. Ptc. Ltd: Singapore, 2009, p234.

(15) Lu, H.-G. In GXYZ Ver. 1.0, A Random Cartesian Coordinates Generating Program; Shanxi University: Taiyuan, China, 2008.

(16) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785.

(17) (a) Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. **1988**, 153, 503. (b) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. **1990**, 166, 275. (c) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. **1990**, 166, 281. (d) Head-Gordon, M.; Head-Gordon, T. Chem. Phys. Lett. **1994**, 220, 122. (e) Saebo, S.; Almlof, J. Chem. Phys. Lett. **1989**, 154, 83.

(18) (a) Cizek, J. Adv. Chem. Phys. **1969**, *14*, 35. (b) Scuseria, G. E.; Schaefer, H. F. J. Chem. Phys. **1989**, *90*, 3700. (c) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. **1987**, *87*, 5968.

(19) (a) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866. (b) Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408.

(20) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.

(21) Frisch, M. J. et al. *Gaussian 03*, revision, A.1; Gaussian, Inc.: Pittsburgh, PA, 2003.

(22) Gilbert, J. M.; Charles, W. B.; Mendel, T.; Joe, F. J. Phys. Chem. 1990, 94, 6996.