Comment on “Two-Dimensional Boron Monolayer Sheets”

In a recent study, Wu et al. predicted that the α_1-sheet boron monolayer is the most stable boron sheet using the PBE0 hybrid functional, instead of the previously predicted α-sheet using the LDA and PBE functionals. However, their PBE0 cohesive energies are unreliable because the k-point sampling in the Brillouin zone is too coarse and the total energy is not variational with respect to the number of k-points.

Our calculations indicated that both the PBE and PBE0 cohesive energies of the α_1-sheet are fluctuating as the k-point mesh increases from $3 \times 3 \times 1$ to $7 \times 7 \times 1$ (Figure 1) in the Monkhorst-Pack scheme. In the PBE0 calculations of ref 1, the Brillouin zone is sampled using k-points with 0.05 Å$^{-1}$ spacing, whose mesh should be $4 \times 4 \times 1$ or $5 \times 5 \times 1$ so that the total energy is not converged with respect to the k-point mesh. When the k-point mesh increases to $10 \times 10 \times 1$, the errors of cohesive energies of α- and α_1-sheets are less than 1 meV. As shown in Figure 1, the α-sheet boron is more stable than the α_1-sheet using the PBE0 and PBE functionals.

![Figure 1](image.png)

Figure 1. Convergence of cohesive energies of α- and α_1-sheet borons with respect to the k-point mesh using the PBE0 and PBE functionals.

All calculations were implemented in VASP5.2,5-6 package. The ion–electron interaction is treated using the projector-augmented wave (PAW)5,6 technique, and the plane-wave cutoff is set to 500 eV. The α- and α_1-sheets are optimized using the PBE functional, and the k-point mesh is $10 \times 10 \times 1$.

REFERENCES AND NOTES