Double-chain planar D_{2h} B_4H_2, C_{2n} B_8H_2, and C_{2n} $B_{12}H_2$: conjugated aromatic borenes†

Da-Zhi Li,ab Qiang Chen,ac Yan-Bo Wu,a Hai-Gang Lu and Si-Dian Li*ac

Received 21st March 2012, Accepted 17th May 2012
DOI: 10.1039/c2cp40902j

Based upon comprehensive theoretical investigations and known experimental observations, we predict the existence of the double-chain planar D_{2n} $B_4H_2(1)$, C_{2n} $B_8H_2(3)$, and C_{2n} $B_{12}H_2(5)$ which appear to be the lowest-lying isomers of the systems at the density functional theory level. These conjugated aromatic borenes turn out to be the boron hydride analogues of the conjugated ethylene D_{2n} $C_2H_2(2)$, 1,3-butadiene C_{2n} $C_4H_4(4)$, and 1,3,5-hexatriene C_{2n} $C_6H_6(6)$, respectively, indicating that a B$_4$ rhombus in B$_8$H$_2$ borenes ($n=2$, 4, 6) is equivalent to a C=C double bond unit in the corresponding C$_6$H$_{2n+2}$ hydrocarbons. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), and electron localization function (ELF) analyses unravel the bonding patterns of these novel borene clusters and indicate that they are all overall aromatic in nature with the formation of islands of both σ- and π-aromaticity. The double-chain planar or quasi-planar C_{2n} $B_8H_2(7)$, C_{2n} $B_{12}H_2(8)$, and C_{2n} $B_{12}H_2(9)$ with one delocalized π orbital, C_{2n} $B_{14}H_2(10)$, C_{2n} $B_{16}H_2(11)$, and C_{2n} $B_{18}H_2(12)$ with two delocalized π orbitals, and C_{2n} $B_{14}H_2(13)$ with three delocalized π orbitals are found to be analogous in π-bonding to D_{2h} $B_4H_2(1)$, C_{2n} $B_8H_2(3)$, and C_{2n} $B_{12}H_2(5)$, respectively. We also calculated the electron affinities and ionization potentials of the neutrals and simulated the photoelectron spectroscopic spectra of the monoanions to facilitate their future experimental characterization. The results obtained in this work enrich the analogous relationship between hydroborons and their hydrocarbon counterparts and help to understand the high stability of the theoretically predicted all-boron nanostructures which favor the formation of double-chain substructures.

I. Introduction

As the prototype of electron deficient elements in the periodic table, boron has a rich chemistry next only to carbon. Boron hydrides B_nH_m have attracted huge attention in both chemistry and materials sciences, with examples including B_3H_6, B_4H_8, B_5H_{10}, B_6H_{12} and B_7H_{14}, with the B_nH_{2n} ($n=1–13$), B_nH_{2n+1}, and $B_nH_{2n+2}^2$+2 dications ($n=1–4$), B_nH_{n+} neutrals ($n=5–13$, 16, 19, 22) and more typically, the cage-like $B_{16}H_{22}^{5–}$ dimions ($n=5–13$). Detailed theoretical investigations on a series of small hydrogen-rich boron hydride clusters with less than four boron atoms have also been reported recently. However, relatively little is known about the nature of boron-rich B_nH_m clusters which contain fewer hydrogen atoms than boron ($n>m$). A few previously reported examples include the perfectly planar C_{2n} B_4H_2 which is fundamentally different from bare C_{2n} B_nH_{2n-}, the perfectly planar D_{3h} B_4H_2 (the so called borozene) which is the boron hydride analogue of benzene, the perfectly planar concentric π-aromatic D_{3h} B_8H_2, D_{2h} $B_{12}H_2$, C_{2n} $B_{18}H_2$, and D_{6h} $B_{18}H_2$ (the so called borannulenes) which are analogous to [10]annulene $C_{10}H_{10}$ but fundamentally different from bare C_{2n} $B_{18}H_2$, and the perfectly planar C_{3n} B_4H_2 $^+$ and C_{2n} B_8H_2 which are the inorganic analogues of cyclopentene cation D_{3h} $C_5H_3^+$ and cyclobutadiene D_{2h} C_4H_4 (but much different from C_{2n} B_4H_2 and D_{2n} B_5, respectively). Planar boron-rich boron hydride clusters also include B_nH_n ($n=1–3$) and $B_{16}H_{16}$ ($n=1–6$). Our group recently reported a systematic investigation on the effect of hydrogenation of $B_2H_0^-$ and found that there exists a 2D–3D transition between $n=3–4$ in $B_2H_0^-$ ($n=1–6$). The available results indicate that partial hydrogenation leads to planarization in small boron-rich B_nH_m clusters (but may cause dramatic changes to the B_n cores) and there seems to exist an interesting analogous relationship to be fully explored between planar hydroboron clusters and their hydrocarbon counterparts.
We perform in this work a systematic first-principles investigation on small boron-rich boron hydride clusters including B\textsubscript{12}H\textsubscript{2}(1), C\textsubscript{2}H\textsubscript{2}H\textsubscript{2}(3), and C\textsubscript{2}H\textsubscript{2}H\textsubscript{2}(5) are the lowest-lying isomers of the systems at density functional theory (DFT) which turn out to be the boron analogues of ethylene C\textsubscript{2}H\textsubscript{2}(2), 1,3-butadiene C\textsubscript{2}H\textsubscript{4}(4), and 1,3,5-hexatriene C\textsubscript{6}H\textsubscript{8}(6) in both geometrical and electronic structures, respectively, establishing an interestingly analogous relationship between the B\textsubscript{n}H\textsubscript{2} clusters (n = 2, 4, 6) and their conjugated hydrocarbon counterparts C\textsubscript{n}H\textsubscript{2n+2}. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP),

We perform in this work a systematic first-principles investigation on small boron-rich boron hydride clusters including B\textsubscript{12}H\textsubscript{2}(1), C\textsubscript{2}H\textsubscript{2}H\textsubscript{2}(3), and C\textsubscript{2}H\textsubscript{2}H\textsubscript{2}(5) are the lowest-lying isomers of the systems at density functional theory (DFT) which turn out to be the boron analogues of ethylene C\textsubscript{2}H\textsubscript{2}(2), 1,3-butadiene C\textsubscript{2}H\textsubscript{4}(4), and 1,3,5-hexatriene C\textsubscript{6}H\textsubscript{8}(6) in both geometrical and electronic structures, respectively, establishing an interestingly analogous relationship between the B\textsubscript{n}H\textsubscript{2} clusters (n = 2, 4, 6) and their conjugated hydrocarbon counterparts C\textsubscript{n}H\textsubscript{2n+2}. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP),

II. Computational procedures
Structural optimizations and frequency analyses were carried out using the DFT-B3LYP method24,25 with the base set of 6-311+g(d,p) implemented in the Gaussian 03 program.26 Initial structures were constructed based upon the low-lying isomers of the bare B\textsubscript{n}0 clusters (n = 3–12)27 by adding two terminal hydrogen atoms at the corner positions. More extensive global minimum searches were performed using the gradient embedded genetic algorithm (GEGA).28 Relative energies for important low-lying isomers are further refined using the coupled cluster method with triple excitations (CCSD(T))29 at the B3LYP geometries. Fig. 1 compares the optimized structures of D\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(1), C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(3), and C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(5) with that of D\textsubscript{2h} C\textsubscript{2}H\textsubscript{2}(2), C\textsubscript{2h} C\textsubscript{2}H\textsubscript{4}(4), and C\textsubscript{2h} C\textsubscript{6}H\textsubscript{8}(6). Fig. 2 shows the occupied \(\pi\)-CMOs of D\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(1), C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(3), and C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(5) compared with that of ethylene D\textsubscript{2h} C\textsubscript{2}H\textsubscript{2}(2).

Fig. 1 Optimized structures of D\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(1), C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(3), and C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(5) at B3LYP/6-311+g(d,p) compared with that of ethylene D\textsubscript{2h} C\textsubscript{2}H\textsubscript{2}(2), 1,3,5-hexatriene C\textsubscript{6}H\textsubscript{8}(6) and 1,3,5-hexatriene C\textsubscript{6}H\textsubscript{8}(6).

Fig. 2 \(\pi\)-CMOs of the optimized D\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(1), C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(3), and C\textsubscript{2h} B\textsubscript{2}H\textsubscript{2}(5) compared with that of ethylene D\textsubscript{2h} C\textsubscript{2}H\textsubscript{2}(2).
This journal is © the Owner Societies 2012

Published on 17 May 2012. Downloaded by Shanxi University on 25/10/2014 09:21:08.

This journal is © the Owner Societies 2012

Published on 17 May 2012. Downloaded by Shanxi University on 25/10/2014 09:21:08.

Fig. 3 π-CMOs of the optimized D_{2h} $B_3H_2(3)$, $C_{2n} B_3H_2^-(10)$, $C_2 B_3H_2^-(11)$, and $C_{2n} B_{10}H_2(12)$ compared with that of 1,3-butadiene $C_{2n} C_4H_4(4)$.

Fig. 4 π-CMOs of the optimized $C_{2n} B_3H_2(5)$ and $C_{2n} B_1H_2^-(13)$ compared with that of 1,3,5-hexatriene $C_{2n} B_4H_6(6)$.

molecular axes, respectively, as shown in Fig. 2. Interestingly, all these DC planar B_nH_2 clusters possess one multi-centered $nc-2e$ π-CMO ($n = 3, 5, 6$) similar to the $4c-2e$ π-CMO of $D_{2h} B_3H_2(1)$ (though they have more or less peripheral $B-B$ σ-bonds than the latter). Thus, $B_3H_2^-(7)$, $D_{2h} B_3H_2(1)$, $B_7H_2^-(8)$, and $B_8H_2(9)$ as a group of boron hydride clusters can all be viewed as the borene analogues of ethylene $C_2H_4(2)$ in terms of π-bonding.

The second boron hydride neutral we are concerned with in this work is the DC planar $C_{2n} B_3H_2(3)$ (14769–14774) which contains two adjacent B_3 rhombuses (see Fig. 1). We confirmed in a previous report14 that DC planar $C_{2n} B_3H_2(3)$ was the ground state of the system upon a partial hydrogenation of the wheel-shaped $D_{2h} B_3$. In this work, we continue to discuss its bonding pattern and compare it with the conjugated chain-like 1,3-butadiene $C_{2n} C_4H_4(4)$. We notice that the two adjacent rhombuses in $C_{2n} B_3H_2(3)$ are very similar to $D_{2h} B_3H_2(1)$ in geometrical parameters (see Fig. 1) and the DC planar structure of $C_{2n} B_3H_2(3)$ is well preserved in its anion $C_{2n} B_3H_2^-$. More interestingly, the two delocalized π-CMOs (HOMO(b$_2$) and HOMO-4(a$_u$)) of $C_{2n} B_3H_2(3)$ spread over the molecular plane appear to be analogous to the two π-CMOs (HOMO(b$_2$) and HOMO-1(a$_u$)) of 1,3-butadiene $C_{2n} C_4H_4(4)$ (see Fig. 3). Obviously, a B_4 rhombus (highlighted in green in Fig. 1) in $C_{2n} B_3H_2(3)$ is equivalent to a $C=$–C double bond unit in 1,3-butadiene $C_{2n} C_4H_4(4)$. Such a B_4 rhombus in $D_{2h} B_3H_2(1)$ and $C_{2n} B_3H_2(3)$ consists of two edge-sharing B_3 triangles with each triangle contributing one π-electron.

Such a π-MO analogy can be extended to DC planar $C_{2n} B_3H_2^-(10)$, $C_2 B_3H_2^-(11)$, and $C_{2n} B_{10}H_2(12)$ which all possess two delocalized π-CMOs (see Fig. 3). It is known that a partial hydrogenation of the convex $C_{6n} B_3^+$ produces a stability conversion which leads to the formation of the DC planar $C_{2n} B_3H_2^-(10)$. Extensive structural searches indicate that a similar stability conversion happens to the perfectly planar wheel-shaped $D_{2h} B_3^+$ upon hydrogenation to produce the ground-state structure of the DC planar $C_{2n} B_3H_2^-(11)$ which follows the same structural pattern as that of $C_{2n} B_3H_2^-(10)$ and $C_{2n} B_3H_2(3)$. DC planar $C_{2n} B_3H_2^-(11)$ appears to lie at least 0.40 eV and 0.34 eV lower than other low-lying isomers at B3LYP and CCSD(T), respectively (see Fig. 1S). However, the DC planar $C_{2n} B_{10}H_2(12)$ neutral with one more boron atom proves to be a local minimum lying 0.49 eV and 0.88 eV higher than $C_{2n} B_{10}H_2^+(A')$ at B3LYP and CCSD(T), respectively (see Fig. 1S).

Now we turn to the DC planar $C_{2n} B_1H_2^-(5)$ which is the biggest and longest cluster studied in this work. It appears to be the lowest-lying isomer of the system at B3LYP (it lies at least 0.30 eV lower than other low-lying isomers at B3LYP, see Fig. 1S). At the more accurate CCSD(T) level, this long strip-like isomer lies 0.17 eV higher than the quasi-planar $C_{2n} B_1H_2^-(13)$ which follows the ground-state structure of the convex $C_{2n} B_1H_2^+(A')$. With such a small energy difference, the two lowest-lying isomers can be practically treated as iso-energetic species in thermodynamics. With one less boron atom than $B_{12}H_2$, the DC planar $C_{2n} B_1H_2^-(5)$ over hydrogenation to produce the ground-state structure except for $n = 10$.

As expected, the three delocalized π-CMOs (HOMO(a$_u$), HOMO-1(b$_2$), and HOMO-2(a$_u$)) of $C_{2n} B_3H_2(5)$ over the molecular plane (see Fig. 4) appear to be similar to the three localized $2c-2e$ π-MOs (HOMO(a$_u$), HOMO-4(b$_2$), and...

Table 1 Comparison of the σ- and π-bonding patterns of D_{2h} B_{n}H_{2}, C_{2h} B_{n}H_{2} and C_{2h} B_{n}B_{2}H_{2} at ELF, ADNDP, and NICS, respectively. All the AdNDP 2e-2e and 4e-2e σ-bonds with the occupation numbers of ON = 1.57–1.98 |e| are superimposed on one framework and all the 4c–2e π-bonds with ON = 1.79–2.00 |e| are superimposed on another. The approximated bifurcation values of ELF_{av} of σ-bonds, and their averages are also tabulated. NICS values are dissected into σ and π contributions (NICS(0)_{σ}, and NICS(0)_{π}) at the centers of the symmetrically distributed B_{n} rhombuses.

<table>
<thead>
<tr>
<th></th>
<th>σ</th>
<th>π</th>
<th>ELF_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{2h} B_{4}H_{2}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADNDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS</td>
<td>47.0(a)</td>
<td>−21.1(a)</td>
<td></td>
</tr>
<tr>
<td>ELF</td>
<td>0.86</td>
<td>0.99</td>
<td>0.93</td>
</tr>
<tr>
<td>ADNDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS</td>
<td>8.8(b), −6.8(c)</td>
<td>−22.9(b), −11.6(c)</td>
<td></td>
</tr>
<tr>
<td>ELF</td>
<td>0.84</td>
<td>0.62</td>
<td>0.73</td>
</tr>
<tr>
<td>ADNDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICS</td>
<td>13.5(d), −6.0(e), −2.9(f)</td>
<td>−25.1(d), −11.1(e), −17.9(f)</td>
<td></td>
</tr>
</tbody>
</table>

HOMO-(6_{(a)_{π}}) of 1,3,5-hexatriene C_{2h} C_{6}H_{6}(6), C_{2h} B_{1}H_{5}−(13) has three similar π-CMOs (HOMO(b_{1}), HOMO-4(a_{2}), and HOMO-6(b_{1})) spread over its molecular plane. Thus, both B_{12}H_{2}(5) and B_{11}H_{2}−(13) can be viewed as boron hydride analogues of C_{2h} C_{6}H_{6}(6) in π-bonding. DC planar B_{8}H_{2}− clusters with π ≥ 13 turn out to be local minima of the systems which favor more spread 2D structures based upon planar or quasi-planar bare B_{n}.^{21}

2 AdNDP, ELF, and NICS analyses

Detailed AdNDP and ELF analyses help to understand the bonding patterns of these DC planar borene clusters. As clearly indicated in Table 1, the AdNDP and ELF bonding patterns of neutral D_{2h} B_{4}H_{2}(1), C_{2h} B_{8}H_{2}(3), and C_{2h} B_{12}H_{2}(5) match almost perfectly in both σ and π components which also agree well with the CMO analyses presented above. D_{2h} B_{4}H_{2}(1) possesses two 2c–2e B–H σ-bonds at two ends, four peripheral 2c–2e B–B σ-bonds surrounding the B_{4} rhombus, and one totally delocalized 4c–2e π-bond over the molecular plane, while C_{2h} B_{8}H_{2}(3) has two 2c–2e B–H σ-bonds at two ends, eight peripheral 2c–2e B–B σ-bonds around the DC planar B_{4} core, two out-of-plane 4c–2e delocalized π-bonds (which correspond to the sum and difference of HOMO(b_{1}) and HOMO-4(a_{2}), respectively, see Fig. 2) over two adjacent rhombuses, and one in-plane 4c–2e delocalized σ-bond in the central rhombus region which serves as the interval between the two 4c–2e delocalized π-bonds, forming an interesting conjugated delocalized π-bond system. C_{2h} B_{12}H_{2}(5) has a similar bonding pattern: it possesses three out-of-plane 4c–2e delocalized π-bonds over three adjacent B_{4} rhombuses and two in-plane 4c–2e delocalized σ-bonds in two rhombus regions which serve as the intervals between the three 4c–2e delocalized π-bonds, forming another conjugated delocalized π-bond system. Such conjugated delocalized π-bond systems in C_{2h} B_{8}H_{2}(3) and C_{2h} B_{12}H_{2}(5) appear to be similar to the conjugated localized π-bonding patterns in 1,3-butadiene C_{2h} C_{4}H_{6}(4) and 1,3,5-hexatriene C_{2h} C_{6}H_{6}(6), respectively (see Fig. 1). We also notice that, according to the AdNDP bonding patterns presented above, these conjugated neutral borene clusters form islands of both π-aromaticity and the overall aromaticity in the rhombus regions covered with 4c–2e π-bonds and σ-aromaticity (in the rhombus intervals covered with 4c–2e σ-bonds). Similar π- and σ-island aromaticities exist in other borene neutrals and anions studied in this work. Santos and coworkers^{34} have established from various organic and inorganic systems that aromatic molecules possess average bifurcation values of ELF_{av} greater than 0.70 at the interval of (0,1). In our cases, shown in Table 1, D_{2h} B_{4}H_{2}(1), C_{2h} B_{8}H_{2}(3), and C_{2h} B_{12}H_{2}(5) possess bifurcation values of ELF_{av} = 0.86, 0.83, and 0.84, ELF_{π} = 0.99, 0.80, and 0.62, and averages of ELF_{av} = 0.93, 0.82, and 0.73, respectively. These DC planar borene clusters are thus all overall aromatic in nature in ELF criteria despite their sizes and electron counts. The formation of islands of both π and σ aromaticity and the overall aromaticity...
of these borene clusters provide extra stability to maintain the DC planar geometries of the \(\text{B}_n\text{H}_2^- \) clusters.

Detailed NICS calculations also support the formation of island aromaticities in 1, 3, and 5. NICS(0)_{isotropic} is the most refined NICS index which extracts the out-of-plane tensor component of the isotropic NICS and includes only the \(\sigma \) MO contributions for quantifying \(\sigma \)-aromaticity, while NICS(0)_{anisotropic} summarizes the \(\sigma \)-MO contributions to justify the \(\sigma \)-aromaticity.\(^{20}\) As shown in Table 1, all the \(\text{B}_n \) rhombuses covered by delocalized 4c–2e \(\pi \)-bonds in 1, 3, and 5 possess high negative NICS(0)_{isotropic} values between \(-17\) to \(-25\) ppm at their geometrical centers (a in 1, b in 3 and d and f in 5), indicating the existence of local ring current and \(\pi \)-aromaticity in these regions. Interestingly, the rhombuses covered by delocalized 4c–2e \(\sigma \) bonds also have negative NICS(0)_{anisotropic} values between \(-6\) to \(-7\) ppm at their centers (c in 3 and e in 5), evidencing the formation of local \(\sigma \)-aromaticity in these intervals between two \(\pi \)-aromatic rhombuses, well in agreement with AdNDP analyses presented above. Thus, corresponding to the delocalized \(\pi \) and \(\sigma \)-bond alternations shown in Table 1 in both AdNDP and ALF, these DC planar conjugated borenes possess \(\pi \) and \(\sigma \)-aromaticity alternations in magnetic properties (NICS criteria).

The analyses presented above indicate that the \(4n+2 \) aromaticity rule originally obtained from monocyclic organic molecules can not be applied to interpret the net aromaticity/antiaromaticity of these DC planar conjugated borene clusters which have multiple aromatic systems. Such unique bonding patterns can only exist in boron-based inorganic clusters in triangular or mixed motifs which possess extensive bond delocalizations to overcome the electron deficiency of the systems.\(^{15–18,21}\)

3 Electron detachment energies

PES in combination with \textit{ab initio} calculations has proven to be a powerful approach in characterizing various gas-phase clusters.\(^{10,21,35–38}\) We predict in this work the vertical detachment energies (VDEs) of the ground-state DC planar \(\text{B}_n\text{H}_2^- \) monoanions (\(n = 3, 4, 5, 6, 7, 8, 9, \) and 11) at TDDFT and simulated their PES spectra in Fig. 5. The electronic binding energies of these clusters well fall within the energy range of conventional excitation lasers (0–7 eV) in PES measurements.\(^{35–38}\) Among these anionic clusters, \(\text{C}_n \) \(\text{B}_1\text{H}_2^- \), \(\text{C}_2 \) \(\text{B}_2\text{H}_2^- \), and \(\text{C}_n \) \(\text{B}_2\text{H}_2^- \) have the highest first VDE values of 3.80, 3.03, and 3.40 eV and \(\text{C}_2 \) \(\text{B}_2\text{H}_2^- \), \(\text{C}_{2n} \) \(\text{B}_2\text{H}_2^- \), and \(\text{C}_2 \) \(\text{B}_2\text{H}_2^- \) possess the largest A–X gaps of 1.67, 1.36, and 1.31 eV between the first peak (X) and the second peak (A), respectively. The high-lying excited states of the \(\text{B}_2\text{H}_2^- \) neutrals appear to be closely located in energy in many cases and are expected to overlap to a certain degree in the PES measurements.

To elucidate the validity of our theoretical prediction, we compare the simulated PES spectrum of \(\text{C}_n \) \(\text{B}_2\text{H}_2^- \) with the available PES spectrum of \(\text{C}_n \) \(\text{B}_2\text{Au}^- \).\(^{10,21}\) Interestingly, the vertical detachment energies of the two isovalent species agree surprisingly well: the first three vertical detachment energies of VDE = 3.40, 4.24 and 4.37 eV calculated for \(\text{C}_n \) \(\text{B}_2\text{H}_2^- \) correspond well to the first three PES peaks at 3.52, 4.27, and 4.38 eV observed for \(\text{C}_n \) \(\text{B}_2\text{Au}^- \), respectively, strongly supporting the \(\text{H}/\text{Au} \) isolobal analogy. Such a comparison may be extended to other \(\text{B}_2\text{X}_2^- \) species (\(\text{X} = \text{H}, \text{Au}, \text{BO} \)) when measured PES spectra are available. We believe that the simulated PES spectra shown in Fig. 5 will well facilitate future PES characterizations of these DC planar monoanions and related species.

We also calculated the ionization potentials (IPs) and electron affinities (EAs) of the most concerned neutrals to facilitate their future spectroscopic investigations. For \(\text{D}_{2n} \) \(\text{B}_2\text{H}_2^+ \), \(\text{B}_2\text{Au}^+ \), and \(\text{B}_2\text{BO}^+ \)
We have presented in this work a comprehensive first-principles investigation on the conjugated aromatic DC planar B2nH2n and B2nH2n+2 which turn out to be the borene analogues of ethylene C2H4, 1,3-butadiene C4H6, and 1,3,5-hexatriene C6H8, respectively. Our results indicate that a B4 rhombus in DC planar B2nH2n+2 can be partially or completely substituted with –Au or –BO radicals to form DC planar B2nAu2 or B2nBO2n boron aurides or B2nBO2n diboronyls. Syntheses and characterizations of such neutral or anionic species in gaseous phases are highly possible through laser ablation of pure boron or boron–metal, –Au or –BO radicals to form DC planar B2nH2n+2. Besides, the –H terminals in the ground state DC planar B2nH2n+2 double-bond unit in the well-known C2nH2n+2 conjugated hydrocarbons, expanding the analogous relationship between the dual spaces of hydroborons and hydrocarbons to one dimensional DC planar structures. Such DC planar substructures may be used as precursors to form the double-ring tubular (DR) B2n−2 DR-interwoven B2n fullerene,25 and the DC-interwoven z-nanotube.26 For example, a DR tubular B20 cluster can be formed by elimination of one H2 molecule through cyclization of a DC planar B20H2. Besides, the –H terminals in the ground state DC planar B20H2 can be partially or completely substituted with –Au or –BO radicals to form DC planar B20Au2 while boron aurides or B20BO2−boron boronyls.21,26,28 Syntheses and characterizations of such neutral or anionic species in gaseous phases are highly possible through laser ablation of pure boron or boron–metal, –Au or –BO radicals to form DC planar B20H2.

IV. Summary

This work was jointly supported by the National Science Foundation of China (No. 20873117 and 21030386) and Shandong Natural Science Foundation (No. 201001012-3). The authors sincerely thank Professor Jun Li at Tsinghua University and Prof. Zhi-Xiang Wang at the Graduate University of Chinese Academy of Sciences for inspirational discussions on the project.

Acknowledgements

This work was jointly supported by the National Science Foundation of China (No. 20873117 and 21030386) and Shandong Natural Science Foundation (No. 201001012-3). The authors sincerely thank Professor Jun Li at Tsinghua University and Prof. Zhi-Xiang Wang at the Graduate University of Chinese Academy of Sciences for inspirational discussions on the project.

References