Structures and magnetic properties of Pd_n clusters (n = 3-19) doped by Mn atoms

Yuewen Mu,¹ Yan Han,¹ Jinlan Wang,² Jian-guo Wan,^{1,*} and Guanghou Wang¹

¹National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China

²Department of Physics, Southeast University, Nanjing 210096, People's Republic of China

(Received 2 August 2011; published 2 November 2011)

The structures and magnetic properties of Pd_n and $Pd_{n-1}Mn$ clusters (n = 3-19) are investigated by using a spin-polarized density functional theory approach. Several different lowest-energy structures of Pd_n clusters (n = 11, 12, 14, 17) are found. It is shown that when a Mn atom is doped into the Pd_n cluster, the cluster structure does not change for n < 9, while Mn doping gives rise to a geometry reconstruction for n > 9. The doping of a Mn atom enhances the stability of Pd_n clusters and increases their magnetic moment by a magnitude of $(3-5)\mu_B$. Moreover, we observe an evident oscillation of steplike magnetic behavior in Pd_n clusters upon doping of a Mn atom, and the origin of such a magnetic phenomenon is analyzed in detail.

DOI: 10.1103/PhysRevA.84.053201

PACS number(s): 36.40.Cg, 36.40.Mr, 61.46.Bc

I. INTRODUCTION

The study of transition-metal clusters has been active for the past few decades due to their fundamental importance and potential applications. It is well known that palladium clusters are promising catalysts [1–3]. Recently, the observation of ferromagnetism in palladium clusters [4–6] made them potentially new magnetic storage materials [5]. Theoretical investigations revealed that small palladium clusters exhibit special magnetism in contrast to the nonmagnetic behavior of a single Pd atom and bulk Pd [7–9]. So the magnetic Pd clusters have drawn much attention in recent years, and much effort has been made in searching for stable Pd clusters with large magnetic moment.

In previous experimental investigations, some conflicting results on the magnetism of Pd clusters have been reported. Early Stern-Gerlach experimental measurements did not show magnetic moments in Pd clusters [10,11], whereas later photoelectron spectra of Pd_n^- clusters confirmed a magnetic behavior for Pd_n clusters when n < 15 [4]. Subsequently, some groups also observed magnetic moments in a few topmost surface layers of Pd clusters with various sizes [5,6]. It is a pity that all these experiments did not provide sufficient information about the structural and electronic properties of Pd clusters, which is actually important for understanding their magnetic properties. Therefore, some theoretical investigations of Pd clusters were simultaneously carried out [7-9,12,13]. Among them, a representative work is the Pd_n clusters (n = 2-23, 55, 147) reported by Kumar *et al.* [7]. They predicted an icosahedral growth pattern and size-dependent oscillatory magnetic moments which are not confined just to the surface atoms. Differently, Zhang et al. [9] recently found that the octahedral Pd₁₉ cluster with fcc-like structures dominates the growth of Pd_n clusters (n = 15-25), which tend to possess smaller magnetic moments than corresponding icosahedron-based structures.

Although many theoretical investigations have been done on palladium clusters, the ground-state structures for some sizes are still uncertain. Taking the Pd_{13} cluster as an example, earlier studies predicted the icosahedral structure as the ground state [7,8], whereas a later study reported a buckled biplanar structure with lower energy [14]. However, very recently, a distorted hexagonal bilayerlike (HBL) structure was predicted to have lower energy than has ever been reported [15]. Therefore, in order to study the magnetism of palladium clusters and the size effect, a more refined search for the lowest-energy structures is required.

In addition, the magnetism modulation of palladium clusters is another important aspect for actual applications. Doping 3*d* transition-metal (TM) elements into a palladium cluster may be a valid avenue. It was reported that the fcc and bcc Pd bulk undergo a transition from paramagnetic ordering to ferromagnetic ordering when doped with Mn atoms, and the alloys become ferrimagnetic or antiferromagnetic with increasing Mn concentration [16]. A large magnetic moment in Mn substitution-doped Pd₁₃ cluster was also predicted [17]. However, in current studies the magnetism evolution of the Mn-doped palladium clusters with their structure and size is seriously lacking, and how the Mn element influences the magnetic behavior of palladium clusters is still unclear.

In this work, we focus on the theoretical exploration of the structural and magnetic properties of Pd_n and bimetallic Pd_{n-1}Mn (n = 3-19) clusters using a density functional theory method combined with a genetic algorithm and an embedded atom method. A more refined search for the lowest-energy structures of Pd_n clusters is performed and some additional cluster structures with lower energy are found. The evolution of the structural and magnetic properties of both Pd_n and Pd_{n-1}Mn clusters with size are studied. Our calculations show that the doping of a Mn atom not only enhances the stability of a Pd_n cluster but also generally increases its total magnetic moment by (3–5) $\mu_{\rm B}$. Moreover, an evident oscillation of the steplike magnetic behavior is observed in the Pd_{n-1}Mn clusters, and the origin of such magnetic behavior is analyzed.

II. COMPUTATIONAL METHODS

We perform a genetic algorithm [18] global search with an accurate embedded atom method (EAM) potential [19] to get the low-lying structures of Pd_n clusters (n = 8-19). This EAM potential was parametrized based on an extensive set of density functional theory calculations of clusters and bulk; therefore, it is much better than early empirical potentials only

1050-2947/2011/84(5)/053201(7)

^{*}wanjg@nju.edu.cn

TABLE I. Comparison of our calculated binding energy per atom, E_b (eV), and bond length R_c (Å) with other theoretical results and experimental (Expt.) studies.

Species	Properties	Ours	Others	Expt.
Pd ₂	E_{h}	0.603	$0.602^{a}(0.611^{b})$	0.698 ^c
	R_c	2.486	$2.514^{a}(2.48^{b})$	2.48°
Mn_2	E_{h}	0.449	$0.48^{b} (0.48^{d})$	$(0.44 \pm 0.30)^{d}$
	R_c	2.586	$2.56^{b} (2.56^{d})$	3.17 ^e
PdMn	E_b	1.252		
	R_{c}	2.268		

hp f

^bReference [34].

^cReference [36].

^dReference [37].

^eReference [38].

fitted to bulk. The small Pd_n clusters for n < 8 have been extensively studied and no discrepancy was found in previous works [7,8,12,20,21]; therefore, a search of the low-lying structures of these clusters was not performed. A number of candidate structures (between 20 and 30) are obtained after 5000 mating steps. The child of each mating is optimized using the conjugate gradient method to achieve the maximum force threshold of 0.1 eV/Å.

Further geometry optimizations are carried out within the framework of spin-polarized density functional theory with the projector augmented wave (PAW) [22,23] pseudopotential method in the Vienna Ab Initio Simulation Package (VASP) [24,25]. The generalized gradient approximation with the Perdew-Burke-Ernzerhof (PBE) [26] exchange-correlation function is exploited. For a Pd atom, $4p^{6}4d^{10}$ electrons are treated as valance electrons while those of the Mn atom are $3p^63d^54s^2$ electrons. A cubic supercell with a side dimension of 20 Å is employed, and only the Γ -point calculations are performed with a kinetic energy cutoff at 500 eV. The clusters are optimized using the conjugate gradient method without symmetry constraint until all the forces on each atom are less than 0.01 eV/Å. The accuracy of the present PBE-PAW scheme is assessed by benchmark calculations on Pd₂ and Mn₂ dimers. As shown in Table I, our results agree well with corresponding experimental values and previous theoretical results.

III. RESULTS AND DISCUSSION

The low-lying structures of Pd_n clusters (n = 8-19) together with corresponding binding energy difference *between* the structure and the ground state, magnetic moments, and symmetries are presented in Fig. 1. In addition to the low-lying Pd_n clusters reported before [7,9,12,13,27], several different ground-state structures, including Pd₁₁, Pd₁₂, Pd₁₄ and Pd₁₇ clusters, are found, which possess lower energy than ever reported at the PBE-PAW level. The ground-state geometries of Pd₁₁, Pd₁₂, and Pd₁₄ clusters resemble the ground-state structure of the Pd₁₃ cluster, which was regarded as a distorted HBL structure [15]. As for the ground-state geometry of Pd₁₇ (17a in Fig. 1), it is energically preferred over the low-lying structure (17b in Fig. 1) by 6 meV, which was taken as the

PHYSICAL REVIEW A 84, 053201 (2011)

19a (0.00, 8, O_b) 19b (0.42, 6, C_1) 19c (0.54, 6, C_2) 19d (0.93, 8, C_2)

FIG. 1. (Color online) The low-lying structural isomers of Pd_n clusters (n = 8–19). The energy difference between isomers and corresponding ground state (eV), magnetic moment (units of $\mu_{\rm B}$), and symmetry are represented under every low-lying structure.

lowest-energy structure by Rogan *et al.* [13]. This energy discrepancy increases to 8 meV when the spin-orbit coupling (SOC) effect is taken into account, which is consistent with an early report that the SOC effect does not affect the relative stability of different structural isomers of Pd clusters [28]. In addition, our ground-state Pd₁₇ cluster can be regarded

STRUCTURES AND MAGNETIC PROPERTIES OF $Pd_n \dots$

FIG. 2. (Color online) The total magnetic moments (units of $\mu_{\rm B}$) of Pd_n and Pd_{n-1}Mn clusters (n = 3-19) and the magnetic moments of Pd_n clusters obtained by Kumar *et al.* [7] and Rogan *et al.* [13].

as a distorted structure obtained by Rogan *et al.* due to the Jahn-Teller effect, further indicating that it is more stable. In addition, we notice that the symmetries of most of the low-lying structures obtained in the present work are lowered due to the Jahn-Teller effect.

The total magnetic moments of Pd_n clusters as a function of cluster size n are plotted in Fig. 2. On the whole, the variation of the total magnetic moments of Pd_n clusters with n shows a typical steplike behavior except for a trough at n = 6, and a magnetic moment jump occurs at n = 10. Comparing the magnetic moments of Pd_n clusters obtained in the present work with those found earlier (also shown in Fig. 2), one notices that there exist significant deviations associated with conflicting trends of the magnetic moment with the cluster size. We consider that such deviations should be caused by the difference in lowest-energy structures since the magnetic energies are extremely sensitive to minute geometry changes [13]. In detail, the lowest-energy structures of Pd_n clusters obtained by Kumar *et al.* are all icosahedral structures, which tend to possess larger magnetic moments due to their high symmetries and low mean coordination [7,29]. Differently, the lowest-energy structures of Pd_n clusters obtained in the present work include various structures such as icosahedron-based, decahedron-based, fcc-like, and hexagonal bilayerlike structures. Although the variation trend of the magnetic moment with the cluster size is similar to that of Kumar et al., the magnetic moments for some sizes (e.g., n = 13, 14, 15) are lower than those of Kumar *et al.*. On the other hand, the lowest-energy structures of Pd_n clusters obtained by Rogan et al. also include various geometry structures. When n < 12, the variaton trend of the magnetic moment with the cluster size is similar to Kumar et al.'s and ours; however, their magnetic moments for some sizes (e.g., n = 15-18) are much smaller than both Kumar et al.'s and ours. The main reason may be that their average bond lengths (2.64–2.65 Å) at these sizes are much smaller than Kumar et al.'s (2.70-2.75 Å) and ours (2.71–2.73 Å) [30,31].

Although similar magnetic step behavior of Pd_n clusters was also reported by other groups [7,13], its origin is still unclear. To understand such a magnetic moment jump, we further calculate the *s*, *p*, and *d* projected density of states

FIG. 3. (Color online) The *s*, *p*, and *d* projected density of states (PDOS) of Pd₉ and Pd₁₀ clusters. The *s* and *p* PDOS are magnified 10 times so as to look into the *spd* hybridization. The filled-area (cyan) curve and unfilled-area (red) curve represent *s* and *d* PDOS, respectively. The black dashed line refers to the Fermi level, which is shifted to zero.

(PDOS) of the Pd₉ and Pd₁₀ clusters, as shown in Fig. 3. It is clearly seen that the magnetic moments of Pd_n clusters mainly come from d states, while the s and p states only contribute a small amount of net spin. The hybridization between s, p, and d states causes the closed-shell Pd atoms to have an incomplete d-shell configuration, which is usually responsible for the magnetism of TM clusters. We notice that, when the cluster size goes up from n = 9 to n = 10 where the magnetic step appears, the up- and down-spin subbands of the s and p states are split greatly, which consequently enhances significantly the depletion of down-spin 4d states through spd hybridization and leads to a large magnetic moment of the Pd_{10} cluster. We consider that the strong increase of the splitting between the spin-up and spin-down contributions of the s or p orbitals at n = 10 is probably correlated with the abrupt increase of average bond length and average coordination number at this size (seen in Fig. 5), since the sd hybridization is very sensitive to the bond length [30].

To tune the magnetic properties of the Pd_n cluster (n = 3–19), we now attempt to dope a Mn atom into it to form a Pd_{n-1}Mn cluster. Several low-lying structural isomers (between four and six) of Pd_n clusters are chosen as the hosts for Mn doping. The optimized low-lying structures of Pd_{n-1}Mn clusters (n = 3–19) are presented in Fig. 4. It is seen that, for n = 3–9, the Mn substitution doping almost does not change the structure of the palladium clusters, and the lowest-energy structure of Pd_{n-1}Mn is still similar to that of the corresponding

MU, HAN, WANG, WAN, AND WANG

18a (0.00, 9, C_{5v}) 18b (0.21, 9, C₁) 19a (0.00, 7, C_{5v}) 19b (0.80, 5, C_{2h})

FIG. 4. (Color online) The low-lying structural isomers of $Pd_{n-1}Mn$ clusters (n = 3-19). The energy difference between isomers and corresponding ground state (eV), magnetic moment (units of μ_B), and symmetry are represented under every low-lying structure. The dark (blue) and light (yellow) balls stand for Pd and Mn atoms, respectively.

Pd_n cluster. As for the Pd₉Mn and Pd₁₀Mn clusters, their structures are very different from corresponding Pd_n clusters and can be regarded as the derivatives of a double trigonal antiprismatic Pd₈Mn cluster. However, for n > 11, except for Pd₁₂Mn, all Pd_{n-1}Mn clusters are geometrically reconstructed and adopt the icosahedron-based structures. Moreover, such icosahedron-based structures tend to possess larger magnetic moments than other kinds of isomers. We further plot the average coordination number of Pd and Mn atoms in the Pd_n and Pd_{n-1}Mn clusters, as shown in Fig. 5(a). It is seen that the Mn atom tends to replace an inner Pd site to increase

FIG. 5. (Color online) (a) The average coordination number of Pd_n and $Pd_{n-1}Mn$ clusters (n = 3-19). (b) The binding energy per atom for the lowest-energy structures of Pd_n and $Pd_{n-1}Mn$ clusters. (c) The average bond length of Pd_n and $Pd_{n-1}Mn$ clusters.

its coordination number. Accordingly, we suggest that the geometry reconstruction of Pd_n clusters (n > 11) after doping Mn should be related to the large difference between the strength of the Pd-Pd bond and the Pd-Mn bond (as seen in Table I).

In order to study the stability of Pd_{n-1}Mn clusters, we further plot the binding energy per atom (E_b) of the lowestenergy structures as a function of cluster size n for both Pd_n and $Pd_{n-1}Mn$ clusters (n = 3-19), as shown in Fig. 5(b). The binding energy per atom of Pd_n clusters rises monotonically with increasing cluster size toward the cohesive energy of bulk Pd solid (3.89 eV/atom), which is in accordance with the variation trend of the average coordination number of Pd atoms [as seen in Fig. 5(a)]. A similar trend is also observed in Pd_{n-1}Mn clusters. In spite of this, the binding energy per atom of the Pd_{n-1}Mn cluster becomes larger than that of Pd_n by 0.11–0.46 eV (except for Pd_{19} , which possesses an octahedron structure with very high symmetry), indicating the enhancement of the stability of Pd_n clusters after Mn doping. We infer that such stability enhancement could be attributed to the following two reasons: (i) more electron transfer from Mn to Pd due to their different electronegativities (1.55 for Mn and 2.20 for Pd), which results in stronger hybridization between

TABLE II. The average magnetic moment of Pd atom (M_1 , units of μ_B) for Pd_n clusters and the average magnetic moments of Pd atom (M_2 , units of μ_B) and Mn atom (M_3 , units of μ_B) for Pd_{n-1}Mn clusters.

n	M_1	M_2	M_3	n	M_1	M_2	M_3
3	0.00	0.41	4.19	12	0.50	0.43	3.73
4	0.50	0.29	4.13	13	0.46	0.42	3.99
5	0.40	0.22	4.12	14	0.43	0.56	3.68
6	0.00	0.18	4.08	15	0.40	0.38	3.66
7	0.29	0.15	4.08	16	0.38	0.49	3.67
8	0.25	0.42	4.06	17	0.47	0.33	3.68
9	0.22	0.14	3.90	18	0.33	0.31	3.69
10	0.60	0.55	4.05	19	0.42	0.18	3.60
11	0.55	-0.27	3.53				

Pd and Mn, and (ii) much shorter length of the Pd-Mn bond [as seen in Fig. 5(c)], which causes a stronger Pd-Mn bond than the Pd-Pd bond (as seen in Table I).

The total magnetic moments of Pd_{n-1}Mn clusters as a function of cluster size n are plotted in Fig. 2. After doping Mn, most of the palladium clusters have an enhanced total magnetic moment by $(3-5)\mu_B$, and the average magnetic moment of Pd_{n-1}Mn clusters increases to $(0.37-1.67)\mu_B$, except for Pd₁₀Mn. Table II lists the average magnetic moments of Pd and Mn atoms in Pd_n and $Pd_{n-1}Mn$ clusters. It is seen that the magnetic moment of Mn atoms in $Pd_{n-1}Mn$ clusters is in the range $(3.53-4.19)\mu_B$ depending on the cluster size, which is much larger than that of Pd atoms in $Pd_{n-1}Mn$ clusters. This indicates that the increase of total magnetic moments of the clusters mainly comes from the doping Mn atom. Due to hybridization and interstitial contribution, the actual magnetic moment of Mn atoms in $Pd_{n-1}Mn$ clusters is smaller than expected by Hund's rules, but much larger than that of Mn_n clusters with similar size, which is only in the range $(0.4-1.7)\mu_{\rm B}$ /atom for n = 5-99 [32,33].

In addition, we find that the steplike magnetic behavior of Pd_n clusters after doping Mn is disturbed, giving rise to an evident oscillation (as seen in Fig. 2). In detail, for some sizes (e.g., n = 8, 14, 16), the total magnetic moment of Pd_n clusters is enhanced by $5\mu_{\rm B}$ after doping, while for other sizes (e.g., n = 7, 9, 10, 12, 13, 15, 17, 18), the total magnetic moment only increases by $1\mu_{\rm B}$ or $3\mu_{\rm B}$. Surprisingly, for n = 11the total magnetic moment of Pd₁₀Mn drops sharply to a very small value of $1\mu_{\rm B}$. From Table II we notice that such oscillating magnetic behavior is consistent with the variation of the average magnetic moment of Pd atoms, which is influenced by the doping Mn atom.

We now analyze the origin of such oscillating magnetic behavior. First, the $Pd_{10}Mn$ cluster is considered. From Table II and Fig. 5(c), we notice that, although the magnetic moment and average coordination number of Mn in the $Pd_{10}Mn$ cluster are similar to those of the clusters of neighboring size, the average Pd-Mn bond length of $Pd_{10}Mn$ is quite short, corresponding to a very small total magnetic moment. This implies that the magnetic moment of $Pd_{n-1}Mn$ clusters is very sensitive to the Pd-Mn bond length. In a previous investigation [34], Shen *et al.* also reported a similar computed result; i.e., shorter bond length could induce antiferromagnetic

FIG. 6. (Color online) The distribution of Pd-Mn bond length between Mn and its nearest-neighbor Pd atoms in $Pd_{n-1}Mn$ clusters (n = 3-19).

coupling in $Co_{n-1}V$ (n = 2-9) clusters. Moreover, it was predicted that the fcc bulk Pd could undergo a transition from a nonmagnetic to a ferromagnetic state when the Pd-Pd bond length is elongated by about 5.5% [30,31]. That is to say, there exists a critical Pd-Pd bond length in bulk (about 2.90 Å) where the transition from a nonmagnetic to a ferromagnetic state occurs. Similarly, in our $Pd_{n-1}Mn$ clusters there may exist a critical Pd-Mn bond length where the magnetic moment varies greatly. Accordingly, we further plot the distribution of the Pd-Mn bond length between Mn and its nearest-neighbor Pd atoms in the $Pd_{n-1}Mn$ clusters with n > 9, as shown in Fig. 6. It is seen that the Pd-Mn bond length is distributed in a wide range of 2.48-2.74 Å. If we assume a critical Pd-Mn bond length of 2.61 Å, the evolution of the magnetism of the $Pd_{n-1}Mn$ clusters can be reasonably explained. For the $Pd_{n-1}Mn$ clusters with size n = 10, 12, 13, 15, 17, 18, since they all have several Pd-Mn bonds shorter than the critical bond length, the total magnetic moments are suppressed to a certain degree and only enhanced by $1\mu_B$ or $3\mu_B$, in comparison with the pure Pd_n clusters. However, for other size clusters (e.g., n = 14, 16), there is no Pd-Mn bond length shorter than the critical value, and thereby the total magnetic moments of the $Pd_{n-1}Mn$ cluster are enhanced significantly by up to $5\mu_B$ as compared with those of the Pd_n clusters.

To gain more insight into the magnetism of the $Pd_{n-1}Mn$ clusters, it is essential to analyze the *s* and *d* PDOS of $Pd_{n-1}Mn$ clusters. The PDOS of *p* orbits is not plotted because of its very small contribution. Here, we choose two clusters, i.e., $Pd_{13}Mn (n = 14)$ without Pd-Mn bonds shorter than the critical value and $Pd_{14}Mn (n = 15)$ with several Pd-Mn bonds shorter than the critical value, to make a comparison of their PDOS and magnetic structures, as shown in Fig. 7. It is seen that, similar to pure Pd_n clusters, the *d* states of both Pd host atoms and doping Mn atoms in $Pd_{n-1}Mn$ clusters play a dominant role in the determination of total magnetic moment, whereas the contribution of *s* states is so small. For a $Pd_{13}Mn$ cluster, there is notable *sd* hybridization and large translation between

FIG. 7. (Color online) The *s* and *d* projected density of states (PDOS) of $Pd_{13}Mn$ and $Pd_{14}Mn$ clusters. The filled-area (cyan) line and unfilled-area (red) line represent PDOS of Pd atoms in $Pd_{13}Mn$ and $Pd_{14}Mn$ clusters, respectively. The black dashed line refers to the Fermi level, which is shifted to zero.

the spin-up and spin-down d PDOS, so a large magnetic moment arises. In contrast, for a Pd₁₄Mn cluster, due to shorter bonds, the strong interaction between the localized d states of Pd and Mn atoms pushes the spin-up d PDOS to higher levels, remarkably, while the spin-down d PDOS holds its position, consequently leading to smaller magnetic moment.

Finally, we turn to the $Pd_{10}Mn$ cluster again and simply analyze its unique magnetic structure. Since there exist many very short Pd-Mn bonds in the $Pd_{10}Mn$ cluster, much stronger *d*-*d* interaction makes the number of spin-up electrons less than the number of spin-down electrons for Pd atoms. As a consequence, the Mn atom tends to be antiferromagneticly coupled to Pd atoms (as seen in Table II) and further decreases the total magnetic moment. In brief, too-short bonds tend to cause strong *d-d* interaction and small magnetic moment of the cluster. This is similar to the case of transition from ferromagnetic to antiferromagnetic ordering in the Fe₁₃ cluster [35], in which antiferromagnetic order or admixtures of antiferromagnetic coordination appears when most of the bonds are short enough. In addition, it should be pointed out that only the Pd₁₀Mn cluster has the antiferromagnetic coordination in the size range of the present work. Such antiferromagnetic coordination may also appear for larger size Pd_{*n*-1}Mn clusters (n > 19) if most of the Pd-Mn bonds are short enough. Further relative investigations are now under way.

IV. CONCLUSION

The geometries of both Pd_n and Pd_{n-1}Mn (n = 3-19) clusters are calculated by using a spin-polarized density functional theory approach combined with a genetic algorithm and EAM. Several different lowest-energy structures of Pd_n clusters (n = 11, 12, 14, 17) are found. For large cluster size (n > 9), when a Mn atom is doped into the Pd_n cluster, it tends to occupy an interior site of the cluster and the geometry reconstruction generally occurs for the Pd_{n-1}Mn clusters. The doping of Mn atoms not only enhances the stability of Pd_n clusters but also increases their total magnetic moments by a magnitude of $(3-5)\mu_{\rm B}$. Moreover, the doping of Mn atoms causes the Pd_{n-1}Mn clusters to give rise to an evident oscillation of steplike magnetic behavior, which is closely related to the Pd-Mn bond length and can be attributed to the *d*-*d* interaction between Pd and Mn atoms.

ACKNOWLEDGMENTS

This work is supported by the National Key Projects for Basic Research of China (Grant No. 2010CB923401), the Provincial Nature Science Foundation of Jiangsu in China (Grant No. BK2008024), the PAPD project, and the National Natural Science Foundation of China (Grants No. 11134005 and No. 50972055). Our calculation is performed on a cluster system (consisting of eight LINKTEL-FX72 blade servers).

- [1] O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez, and R. M. Crooks, J. Am. Chem. Soc. **128**, 4510 (2006).
- [2] B. Kalita and R. C. Deka, J. Am. Chem. Soc. 131, 13252 (2009).
- [3] A. S. Wörz, K. Judai, S. Abbet, and U. Heiz, J. Am. Chem. Soc.
- **125**, 7964 (2003).
- [4] G. Ganteför and W. Eberhardt, Phys. Rev. Lett. **76**, 4975 (1996).
 [5] T. Taniyama, E. Ohta, and T. Sato, Europhys. Lett. **38**, 195
- (1997).
- [6] T. Shinohara, T. Sato, and T. Taniyama, Phys. Rev. Lett. 91, 197201 (2003).
- [7] V. Kumar and Y. Kawazoe, Phys. Rev. B 66, 144413 (2002).
- [8] M. Moseler, H. Häkkinen, R. N. Barnett, and U. Landman, Phys. Rev. Lett. 86, 2545 (2001).

- [9] H. L. Zhang, D. X. Tian, and J. J. Zhao, J. Chem. Phys. 129, 114302 (2008).
- [10] A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, Phys. Rev. B 49, 12295 (1994).
- [11] D. C. Douglass, J. P. Bucher, and L. A. Bloomfield, Phys. Rev. B 45, 6341 (1992).
- [12] T. Futschek, M. Marsman, and J. Hafner, J. Phys. Condens. Matter 17, 5927 (2005).
- [13] J. Rogan, G. García, M. Ramírez, V. Munoz, J. A. Valdivia, X. Andrade, R. Ramirez, and M. Kiwi, Nanotechnology 19, 205701 (2008).
- [14] C. M. Chang and M. Y. Chou, Phys. Rev. Lett. 93, 133401 (2004).

STRUCTURES AND MAGNETIC PROPERTIES OF $Pd_n \dots$

PHYSICAL REVIEW A 84, 053201 (2011)

- [15] M. J. Piotrowski, P. Piquini, and J. L. F. Da Silva, Phys. Rev. B 81, 155446 (2010).
- [16] C. Jing, Y. Yang, S. X. Cao, and J. C. Zhang, Mod. Phys. Lett. B 20, 305 (2006).
- [17] S. Nigam, C. Majumder, and S. K. Kulshreshtha, Phys. Rev. B 76, 195430 (2007).
- [18] D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995).
- [19] B. Shan, L. G. Wang, S. Yang, J. Hyun, N. Kapur, Y. J. Zhao, J. B. Nicholas, and K. Cho, Phys. Rev. B 80, 035404 (2009).
- [20] W. Q. Zhang, Q. F. Ge, and L. C. Wang, J. Chem. Phys. 118, 5793 (2003).
- [21] J. Rogan, G. Garcia, J. A. Valdivia, W. Orellana, A. H. Romero, R. Ramirez, and M. Kiwi, Phys. Rev. B 72, 115421 (2005).
- [22] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
- [23] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- [24] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- [25] G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
- [26] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

- [27] F. Aguilera-Granja, A. Vega, J. Rogan, W. Orellana, and G. García, Eur. Phys. J. D 44, 125 (2007).
- [28] P. Błoński and J. Hafner, J. Phys. Condens. Matter 23, 136001 (2011).
- [29] V. Kumar and Y. Kawazoe, Eur. Phys. J. D 24, 81 (2003).
- [30] H. Chen, N. E. Brener, and J. Callaway, Phys. Rev. B 40, 1443 (1989).
- [31] L. Vitos, B. Johansson, and J. Kollár, Phys. Rev. B 62, R11957 (2000).
- [32] M. B. Knickelbein, Phys. Rev. Lett. 86, 5255 (2001).
- [33] M. B. Knickelbein, Phys. Rev. B 70, 014424 (2004).
- [34] N. F. Shen, J. L. Wang, and L. Y. Zhu, Chem. Phys. Lett. 467, 114 (2008).
- [35] P. Bobadova-Parvanova, K. A. Jackson, S. Srinivas, and M. Horoi, Phys. Rev. B 66, 195402 (2002).
- [36] K. P. Huber and G. Herzberg, *Molecular Structure and Molecular Spectra IV. Constants of Diatomic Molecules* (Van Nostrand Reinhold, New York, 1979).
- [37] M. D. Morse, Chem. Rev. 86, 1049 (1986).
- [38] K. D. Bier, T. L. Haslett, A. D. Kirkwood, and M. Moskovits, J. Chem. Phys. 89, 6 (1988).