Bridging Gold: B-Au-B Three-Center-Two-Electron Bonds in Electron-Deficient $\mathrm{B}_{2} \mathrm{Au}_{n}^{-/ 0}(n=1,3,5)$ and Mixed Analogues

WEN-ZHI YAO, ${ }^{1}$ DA-ZHI LI, ${ }^{1}$ SI-DIAN LI ${ }^{1,2}$
${ }^{1}$ Institue of Molecular Science, Shanxi University, Taiyuan 030001, Shanxi,
People's Republic of China
${ }^{2}$ Institute of Materials sciences and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, Shanxi, People's Republic of China
Received 7 January 2010; Revised 10 May 2010; Accepted 12 May 2010
DOI 10.1002/jcc. 21602
Published online 22 July 2010 in Wiley Online Library (wileyonlinelibrary.com).

Abstract

A systematic density functional theory and wave function theory investigation on the geometrical and electronic structures of the electron-deficient diboron aurides $\mathrm{B}_{2} \mathrm{Au}_{\mathrm{n}}^{-/ 0}(n=1,3,5)$ and their mixed analogues $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}(m+n=3,5)$ has been performed in this work. Ab initio theoretical evidences strongly suggest that bridging gold atoms exist in the ground states of $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right), \mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}\left({ }^{1} \mathrm{~A}\right), \mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{3}\left({ }^{2} \mathrm{~B}_{1}\right), \mathrm{C}_{2}$ $\mathrm{B}_{2} \mathrm{Au}_{5}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$, and $\mathrm{C}_{5} \mathrm{~B}_{2} \mathrm{Au}_{5}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$, which all prove to possess a $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ three-center-two-electron ($3 \mathrm{c}-2 \mathrm{e}$) bond. For $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}(m+n=3,5)$ mixed anions, bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ units appear to be favored in energy over bridging $\mathrm{B}-\mathrm{H}-\mathrm{B}$, as demonstrated by the fact that the Au-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right), \mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{HAu}_{2}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)$, and $\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{HAu}_{4}^{-}$ $\left({ }^{1} \mathrm{~A}\right)$ lie clearly lower than their H -bridged counterparts $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right), \mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{HAu}_{2}^{-}\left({ }^{1} \mathrm{~A}\right)$, and $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{HAu}_{4}^{-}$ $\left({ }^{1} \mathrm{~A}_{1}\right)$, respectively. Orbital analyses indicate that Au 6 s makes about $92-96 \%$ contribution to the Au-based orbitals in these B-Au-B 3c-2e interactions, whereas Au 5 d contributes $8-4 \%$. The adiabatic and vertical detachment energies of the concerned anions have been calculated to facilitate their future experimental characterizations. The results obtained in this work establish an interesting $3 c-2 e$ bonding model $(B-A u-B)$ for electron-deficient systems in which Au 6 s plays a major role with non-negligible contribution from Au 5 d .

© 2010 Wiley Periodicals, Inc. J Comput Chem 32: 218-225, 2011
Key words: diboron aurides; bridging gold; 3c-2e bonds; ab initio calculations; structures; properties

Introduction

Gold differs dramatically from other coinage metals (Cu and $\mathrm{Ag} \mathrm{)}$ mainly because of its strong relativistic effects: the stabilization and contraction of Au 6 s and the concomitant destabilization and expansion of $\mathrm{Au} 5 \mathrm{~d} .^{1,2}$ This gives rise to the high-electronic affinity of Au that behaves like halogens in alkaline metal and transition metal aurides. ${ }^{1-4} \mathrm{Au}$ also possesses the highest electronegativity (2.4) in all metals, which is comparable with that of $\mathrm{H}(2.2)$. Au / H similarity is well supported by the surprising experimental discovery of $\mathrm{H} / \mathrm{AuPR}_{3}$ analogy ${ }^{5}$ and, more recently, the joint experimental and theoretical confirmation of the H / Au isolobal relationship in silicon aurides $\mathrm{T}_{\mathrm{d}} \mathrm{SiAu}_{4}^{0 /-},{ }^{6} \mathrm{C}_{2 \mathrm{v}} \mathrm{Si}_{2} \mathrm{Au}_{2}^{0 /-}$, and $\mathrm{C}_{2 \mathrm{~h}} / \mathrm{C}_{2 \mathrm{v}}$ $\mathrm{Si}_{2} \mathrm{Au}_{4}^{-7}$ and heptaboron auride $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{7} \mathrm{Au}_{2}{ }^{0 /-}$. Cage-like $\mathrm{B}_{n} \mathrm{Au}_{n}^{2-}$ ($n=5-12$) with n - Au terminals were predicted stable recently in theory. ${ }^{9}$ Relativistic pseudopotential calculations on the X-centered $\mathrm{XAu}_{n}^{\mathrm{m}+}$ cluster cations $(\mathrm{X}=\mathrm{B}-\mathrm{N}, \mathrm{Al}-\mathrm{S}, n=4-6)^{10}$ and $\mathrm{Au}-$ bridged $\mathrm{X} \cdots \mathrm{Au}-\mathrm{Y}$ Lewis acid-base pairs ${ }^{11}$ were also reported. However, to the best of our knowledge, there have been no inves-
tigations reported in literature on bridging gold atoms in electrondeficient systems possessing three-center two-electron (3c-2e) bonds. In this work, we choose diboron aurides $\mathrm{B}_{2} \mathrm{Au}_{n}^{-/ 0}(n=1$, $3,5)$ and their mixed analogues $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}(m+n=3,5)$ as typical examples to investigate the possibility of electron-deficient B -Au-B 3c-2e bonds. Theoretical evidences at both density functional theory (DFT) and wave function theory levels strongly suggest that bridging Au atoms exist in the ground states of $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{B}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right), \mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}\left({ }^{1} \mathrm{~A}\right), \mathrm{C}_{2 \mathrm{v}} \quad \mathrm{B}_{2} \mathrm{Au}_{3}\left({ }^{2} \mathrm{~B}_{1}\right), \mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$, and $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{5}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$, which all contain a $\mathrm{B}-\mathrm{Au}-\mathrm{B} 3 \mathrm{c}-2 \mathrm{e}$ bond. Bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ units appear to be energetically favored over bridging $\mathrm{B}-\mathrm{H}-\mathrm{B}$ in $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}(m+n=3,5)$ mixed clusters, as demonstrated by the fact that the Au-bridged $\mathrm{C}_{2 v} \mathrm{~B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}$ $\left({ }^{1} \mathrm{~A}_{1}\right), \mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{HAu}_{2}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)$, and $\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{HAu}_{4}^{-}\left({ }^{1} \mathrm{~A}\right)$ lie obviously lower than their H -bridged isomers $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right), \mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{HAu}_{2}^{-}$ $\left({ }^{1} \mathrm{~A}\right)$, and $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{HAu}_{4}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$. The adiabatic (ADEs) and vertical

[^0]electron detachment energies (VDEs) of $\mathrm{B}_{2} \mathrm{Au}_{n}^{-}$and $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}$ anions have been calculated to aid their photoelectron spectroscopy (PES) characterizations. The results achieved in this work establish an interesting $3 \mathrm{c}-2 \mathrm{e}$ bonding model $(\mathrm{B}-\mathrm{Au}-\mathrm{B})$ for elec-tron-deficient systems and present the possibilities of new goldrich compounds, which may possess novel catalytic and chemical properties. ${ }^{5-11}$

Theoretical Methods

Intensive structural searches were performed using a DFT-based random structure-generating program (GXYZ). ${ }^{12}$ Further structural optimizations, frequency analyses, and natural-localized molecular orbital (NLMO) analyses were comparatively carried out on low lying isomers using the hybrid B3LYP ${ }^{13}$ method and the secondorder Møller-Plesset approach with the frozen core approximation (MP2(FC)). ${ }^{14}$ MP2 produced similar ground-state structures and relative energy orders with B3LYP with slightly different bond parameters. Relative energies for the lowest lying isomers were further refined using the coupled cluster method with triple excitations $(\operatorname{CCSD}(\mathrm{T}))^{15}$ at B3LYP structures. The Stuttgart quasi-relativistic pseudo-potentials and basis sets augmented with two ftype polarization functions and one g-type polarization function (Stuttgart_rsc_1997_ecp $+2 \mathrm{f} 1 \mathrm{~g}[\alpha(\mathrm{f})=0.498, \alpha(\mathrm{f})=1.464$, and $\alpha(\mathrm{g})=1.218)]^{16}$ were employed for Au with 19 valence electrons, and the augmented Dunning's correlation consistent basis set of aug-cc-pvTZ ${ }^{17}$ was used for B and H throughout this work. The ADEs of the anions were calculated as the energy differences between the anions and the corresponding neutrals at their ground-state structures, whereas VDEs calculated as the energy differences between the anions and neutrals at the anionic structures. Such a theoretical procedure has proven to be reliable for $\mathrm{SiAu}_{4}^{-}, \mathrm{Si}_{2} \mathrm{Au}_{x}^{-}$, and $\mathrm{B}_{7} \mathrm{Au}_{2}^{-}$in predicting their ground-state structures and analyzing their PES spectra. ${ }^{6-8}$ The low lying isomers obtained are depicted in Figures 1-4 with relative energies at B3LYP, MP2, and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ indicated. The molecular orbital (MO) pictures, contour plots, and orbital hybridizations of the $\mathrm{B}-\mathrm{Au}-\mathrm{B} 3 \mathrm{c}-2 \mathrm{e} \tau$ bonds discussed in this work are shown in Figure 5, with the natural atomic charges and Wiberg bond indexes of $\mathrm{B}_{2} \mathrm{Au}_{n}^{-/ 0}(n=1,3,5)$ tabulated in Table 1 and ADEs and VDEs of the $\mathrm{B}_{2} \mathrm{Au}_{n}^{-}$and $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}$anions summarized in Table 2. All the calculations in this work were performed using the Gaussian 03 program. ${ }^{18}$

Results and Discussion

$B_{2} A u^{-}$and $B_{2} A u$

We started from $\mathrm{B}_{2} \mathrm{Au}^{-}$and $\mathrm{B}_{2} \mathrm{Au}$, the smallest diboron aurides possible to contain a bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ unit. As shown in Figure 1 , the Au -bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)(\mathbf{1})$ is indeed the ground state of $\mathrm{B}_{2} \mathrm{Au}^{-}$: it lies 1.12 and 0.12 eV lower than the nonbridged $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}^{-}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)(\mathbf{2})$ at MP2 and $\operatorname{CCSD}(\mathrm{T})$, respectively (though it is 0.64 eV less stable than $\mathrm{C}_{\mathrm{s}} 2$ at B3LYP). However, the Au-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}\left({ }^{2} \mathrm{~B}_{1}\right)$ neutral (3) proves to be a local minimum lying $0.63,0.06$, and 0.15 eV higher than the nonbridged $\mathrm{C}_{\infty v} \mathrm{~B}_{2} \mathrm{Au}\left({ }^{4} \Sigma \overline{\mathrm{~g}}\right)$ (4) at B3LYP, MP2, and $\operatorname{CCSD}(\mathrm{T})$,
respectively. $B_{2} A u$ neutral has the same number of valence electrons as $\mathrm{B}_{2}^{-}\left({ }^{4} \Sigma \bar{g}\right)^{19}$ and $\mathrm{C}_{\infty v} \mathrm{~B}_{2} \mathrm{Au}(\mathbf{4})$ possesses the same geometry as linear $\mathrm{B}_{2} \mathrm{H}^{20}$ In $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)(\mathbf{1})$, Au 6 s overlaps with one of the two half-filled π_{u} orbitals of $\mathrm{B}_{2}\left({ }^{3} \Sigma \overline{\mathrm{~g}}\right)^{19}$ and the extra electron of the anion enters the other half-filled B-B π_{u} orbital perpendicular to the molecular plane. The bond order increase from $\mathrm{WBI}_{\mathrm{B}-\mathrm{B}}=1.96$ in $\mathbf{3}$ to $\mathrm{WBI}_{\mathrm{B}-\mathrm{B}}=2.77$ in $\mathbf{1}$, and the bond length decrease from $r_{\mathrm{B}-\mathrm{B}}=1.65 \AA$ in 3 to $r_{\mathrm{B}-\mathrm{B}}$ $=1.60 \AA$ in 1 well support this bonding mode. The natural atomic charges of $q_{\mathrm{B}}=-0.58 \mathrm{lel}$ and $q_{\mathrm{Au}(\mathrm{b})}=+0.16 \mathrm{lel}$ and the $\mathrm{B}-\mathrm{Au}$ bridging bond orders of $\mathrm{WBI}_{\mathrm{B}-\mathrm{Au}(\mathrm{b})}=0.76$ in $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}$ (1) also indicates that the extra electron of the anion has been totally localized between $\mathrm{B}-\mathrm{B}$, and the bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B} 3 \mathrm{c}-$ 2 e interaction is mainly covalent.

Detailed NLMO analyses quantitatively reveal the existence of a bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B} 3 \mathrm{c}-2 \mathrm{e}$ bond (τ bond) in both $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{B}_{2} \mathrm{Au}^{-}(\mathbf{1})$ and $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}(\mathbf{3})$, as clearly shown in their $3 \mathrm{c}-2 \mathrm{e}$ orbital pictures, contour plots, and orbital hybridizations in Figure 5. With the orbital hybridization of $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}=0.50\left(\mathrm{sp}^{22.2}\right)_{\mathrm{B}}$ $+0.71\left(\mathrm{sd}^{0.09}\right)_{\mathrm{Au}}+0.50\left(\mathrm{sp}^{22.2}\right)_{\mathrm{B}}$ and the corresponding atomic contribution of $25 \% \mathrm{~B}+50 \% \mathrm{Au}+25 \% \mathrm{~B}$ for the $3 \mathrm{c}-2 \mathrm{e}$ bond in $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}$(1), Au 6 s makes 91.9% and Au 5 d makes 8.0% contribution to the Au-based orbital, whereas B 2p contributes 94.8% and B 2 s contributes 4.3% to the B-based orbital. Obviously, Au 6 s and B 2 p make the major contributions to the $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ bridging bond in $\mathrm{C}_{2 v} \mathrm{~B}_{2} \mathrm{Au}^{-}$. This agrees with the qualitative discussion presented earlier. However, the 8% contribution from Au 5 d is not negligible due to the strong relativistic effects of Au . Thus, the $3 \mathrm{c}-2 \mathrm{e}$ bond of $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}$can be practically approximated as $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}=0.50(\mathrm{p})_{\mathrm{B}}+0.71\left(\mathrm{sd}^{0.09}\right)_{\mathrm{Au}}+$ $0.50(\mathrm{p})_{\mathrm{B}}$, as shown in Figure 5. As a local minimum, neutral $\mathrm{C}_{2 \mathrm{v}} \quad \mathrm{B}_{2} \mathrm{Au}$ (3) possesses a similar $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}$ bond with $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{B}_{2} \mathrm{Au}^{-}(\mathbf{1})$.

$$
B_{2} A u_{3}^{-}, B_{2} H_{2} A u^{-} \text {, and } B_{2} H A u_{2}^{-}
$$

Adding one-Au terminally to each B center in $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}$(1) produces the ground state of the slightly distorted T-shaped C_{2} $\mathrm{B}_{2} \mathrm{Au}_{3}^{-}\left({ }^{1} \mathrm{~A}\right)(5)\left(\mathrm{C}_{2} 5\right.$ has the exact symmetry of $\mathrm{C}_{2 \mathrm{v}}$ at MP2), which proves to be $0.35,1.50$, and 1.68 eV more stable than the Y-shaped transition state of $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{3}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)$ (6) (which has one small imaginary frequency at $15 \mathrm{i} \mathrm{cm}^{-1}$ vibrationally leading to C_{2} 5), the slightly distorted chain $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{3}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)$ (7), and the slightly off-planed $\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}\left({ }^{1} \mathrm{~A}\right)(\mathbf{8})$ at $\operatorname{CCSD}(\mathrm{T})$, respectively. The $\mathrm{Au}-$ bridged $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}(5)$ with the $\mathrm{B}-\mathrm{B}$ distance of $r_{\mathrm{B}-\mathrm{B}}=1.53 \AA$ is the diboron auride analogue of the H -bridged $\mathrm{C}_{2 \mathrm{v}} \quad \mathrm{B}_{2} \mathrm{H}_{3}^{-}$in which $r_{\mathrm{B}-\mathrm{B}}=1.466 \AA$ at MP2(full)/6-311G苂. ${ }^{20,21}$ The terminal (t) and bridging (b) bonds in $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}$(5) have the bond lengths of $r_{\mathrm{B}-\mathrm{Au}(\mathrm{t})}=1.98 \AA$ and $r_{\mathrm{B}-\mathrm{Au}(\mathrm{b})}=2.18 \AA$, and the corresponding bond orders of $\mathrm{WBI}_{\mathrm{B}-\mathrm{Au}(\mathrm{t})}=1.05$ and $\mathrm{WBI}_{\mathrm{B}-\mathrm{Au}(\mathrm{b})}=0.62$, respectively. The atomic charges of $q_{\mathrm{B}}=-0.68 \mathrm{lel}, q_{\mathrm{Au}(\mathrm{b})}=$ +0.22 lel , and $q_{\mathrm{Au}(\mathrm{t})}=+0.07 \mathrm{lel}$, and the $\mathrm{B}-\mathrm{Au}$ bridging bond orders of $\mathrm{WBI}_{\mathrm{B}-\mathrm{Au}(\mathrm{b})}=0.62$ in 5 indicate again that the extra electron of the anion is totally localized in the $\mathrm{B}-\mathrm{B} \pi_{\mathrm{u}}$ orbital perpendicular to the molecular plane, and the $B-A u-B \quad 3 c-2 e$ bond is basically covalent. Different from $\mathrm{B}_{2} \mathrm{H}_{3}$ that favors a nonbridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{H}_{3}\left({ }^{2} \mathrm{~B}_{1}\right)$ (similar to $\left.\mathrm{C}_{2 \mathrm{v}} 26\right),{ }^{21} \mathrm{~B}_{2} \mathrm{Au}_{3}$ neutral favors
(a) $\mathrm{B}_{2} \mathrm{Au}^{-}$
(b) $\mathrm{B}_{2} \mathrm{Au}$

	1. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$	2. $\mathrm{C}_{\mathrm{s}}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$	3. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{2} \mathrm{~B}_{1}\right)$	4. $\mathrm{C}_{\text {ov }}\left({ }^{4} \Sigma_{\mathrm{g}}{ }^{-}\right)$
$\Delta \mathbf{E} / \mathrm{B} 3 \mathrm{LYP}$	0.00	-0.64	0.00	-0.63
MP2	0.00	+1.12	0.00	-0.06
CCSD(T)	0.00	+0.12	0.00	-0.15

Figure 1. Two Lowest lying isomers of (a) $\mathrm{B}_{2} \mathrm{Au}^{-}$and (b) $\mathrm{B}_{2} \mathrm{Au}$ at B3LYP, with the relative energies $\Delta E(\mathrm{eV})$ at $\mathrm{B} 3 \mathrm{LYP} / / \mathrm{B} 3 \mathrm{LYP}, \mathrm{MP} 2 / / \mathrm{MP} 2$, and $\mathrm{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ indicated.
(a) $\mathrm{B}_{2} \mathrm{Au}_{3}{ }^{-}$
(c) $\mathrm{B}_{2} \mathrm{HAu}_{2}^{-}$

14. $\mathrm{C}_{2}\left({ }^{1} \mathrm{~A}\right)$
15. $\mathrm{C}_{1}\left({ }^{1} \mathrm{~A}\right)$
16. $\mathrm{C}_{\mathrm{s}}\left({ }^{1} \mathrm{~A}^{\prime}\right)$

- $\mathbf{E} /$ B3LYP

9. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$
10. $\mathrm{C}_{\mathrm{s}}\left({ }^{1} \mathrm{~A}^{\prime}\right)$
\triangle E/B3LYP
0.00
$+0.53$
$+0.76$
$+0.57$
$\operatorname{CCSD}(\mathrm{T})$
0.00
11. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$
12. $\mathrm{C}_{\mathrm{s}}\left({ }^{1} \mathrm{~A}^{\prime}\right)$
+0.47
+0.99
+1.92
+2.45

$+0.65$
+1.91

MP2
$\operatorname{CCSD}(\mathrm{T})$
$+0.62$
$+0.95$
$+2.45$
$+1.77$
$+1.79$
$+2.60$
+1.89

Figure 2. Four lowest lying isomers of (a) $\mathrm{B}_{2} \mathrm{Au}_{3}{ }^{-}$, (b) $\mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}$, and (c) $\mathrm{B}_{2} \mathrm{HAu}_{2}{ }^{-}$at B3LYP, with relative energies $\Delta E(\mathrm{eV})$ at $\mathrm{B} 3 \mathrm{LYP} / / \mathrm{B} 3 \mathrm{LYP}, \mathrm{MP} 2 / / \mathrm{MP} 2$, and $\mathrm{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ indicated.
(a) $\mathrm{B}_{2} \mathrm{Au}_{5}{ }^{-}$
$\Delta \mathbf{E} /$ B3LYP
MP2
$\operatorname{CCSD}(T)$
17. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$
18. $\mathrm{C}_{\mathrm{s}}\left({ }^{1} \mathrm{~A}^{\prime}\right)$
$+0.01$
+1.44
$+0.64$
(b) $\mathrm{B}_{2} \mathrm{HAu}_{4}^{-}$
$\Delta \mathbf{E} /$ B3LYP
21. $C_{1}\left({ }^{1} \mathrm{~A}\right)$
22. $\mathrm{C}_{1}\left({ }^{1} \mathrm{~A}\right)$
$+0.06$
+0.80
+0.43

MP2
$\operatorname{CCSD}(\mathrm{T})$

19. $\mathrm{C}_{\mathrm{s}}\left({ }^{1} \mathrm{~A}^{\prime}\right)$
$+0.20$
$+1.64$
$+0.62$
20. $\mathrm{D}_{2 \mathrm{~d}}\left({ }^{1} \mathrm{~A}_{1}\right)$
$+0.72$
+2.10
+1.42

23. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{1} \mathrm{~A}_{1}\right)$
24. $\mathrm{C}_{\mathrm{s}}\left({ }^{1} \mathrm{~A}^{\prime}\right)$
$+0.58$
$+0.82$
+1.01
+1.33
$+0.71$
$+0.88$

Figure 3. Four lowest lying isomers of (a) $\mathrm{B}_{2} \mathrm{Au}_{5}^{-}$, (b) $\mathrm{B}_{2} \mathrm{HAu}_{4}^{-}$at B3LYP, with relative energies $\Delta E(\mathrm{eV})$ at B3LYP//B3LYP, MP2//MP2, and CCSD(T)//B3LYP indicated.
the Au-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{3}\left({ }^{2} \mathrm{~B}_{1}\right)(\mathbf{2 5})$, which lies 0.39 eV lower than the nonbridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{3}\left({ }^{2} \mathrm{~B}_{1}\right)(26)$.

It is interesting to compare the $3 \mathrm{c}-2 \mathrm{e}$ bonds in the slightly distorted $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}(5)\left[\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}=0.52(\mathrm{p})_{\mathrm{B}}+0.67\left(\mathrm{sd}^{0.06}\right)_{\mathrm{Au}}+\right.$ $\left.0.52(\mathrm{p})_{\mathrm{B}}\right]$ and $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{H}_{3}^{-}\left[\tau_{\mathrm{B}-\mathrm{H}-\mathrm{B}}=0.52\left(\mathrm{sp}^{8.6}\right)_{\mathrm{B}}+0.67(\mathrm{~s})_{\mathrm{H}}+\right.$ $0.52\left(\mathrm{sp}^{8.6}\right)_{\mathrm{B}}$] at B3LYP level. Surprisingly, bridging $\mathrm{Au}\left(\mathrm{sd}^{0.06}\right)$ in $\mathrm{B}_{2} \mathrm{Au}_{3}^{-}$and bridging $\mathrm{H}(\mathrm{s})$ in $\mathrm{B}_{2} \mathrm{H}_{3}^{-}$make exactly the same contri-
bution (45\%) to the 3c-2e interactions in these T-shaped monoanions! However, there exist obvious differences between them in orbital hybridizations. First, the 27% contribution from each B center is different: B 2 s orbital in $\mathrm{B}_{2} \mathrm{H}_{3}^{-}$makes about 10% contribution to the B sp hybridization, whereas B 2 s in $\mathrm{B}_{2} \mathrm{Au}_{3}^{-}$contributes $<3 \%$, which has been omitted in Figure 5. Second, the Aubased orbital in $\mathrm{B}_{2} \mathrm{Au}_{3}^{-}$contains 94.2% contribution from Au 6 s
(a) $\mathrm{B}_{2} \mathrm{Au}_{3}$

$\triangle \mathbf{E} / \mathrm{B} 3 L Y P$
MP2
25. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{2} \mathrm{~B}_{1}\right)$
0.00
0.00
0.00

26. $\mathrm{C}_{2 \mathrm{v}}\left({ }^{2} \mathrm{~B}_{1}\right)$
$+0.21$
$+0.59$
$+0.39$
(b) $\mathrm{B}_{2} \mathrm{Au}_{5}$

27. $\mathrm{C}_{\mathrm{s}}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$
0.00
0.00
0.00

28. $\mathrm{C}_{\mathrm{s}}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$
$+0.28$
+1.30
$+0.85$

Figure 4. Two lowest lying isomers of (a) $\mathrm{B}_{2} \mathrm{Au}_{3}$ and (b) $\mathrm{B}_{2} \mathrm{Au}_{5}$ neutrals obtained at B3LYP, with relative energies $\Delta E(\mathrm{eV})$ at $\mathrm{B} 3 \mathrm{LYP} / / \mathrm{B} 3 \mathrm{LYP}, \mathrm{MP} 2 / / \mathrm{MP} 2$, and $\mathrm{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ indicated.

Table 1. Calculated Natural Atomic Charges ($q / l e l$), Wiberg Bond Indexes (WBI), and Total Atomic Bond Orders $\left(\mathrm{WBI}_{\mathrm{B}}\right.$ and $\left.\mathrm{WBI}_{\mathrm{Au}}\right)$ of the Au-bridged $\mathrm{B}_{2} \mathrm{Au}_{\mathrm{n}}^{-/ 0}$ Clusters at B3LYP Level. $\mathrm{Au}(\mathrm{t})$ and $\mathrm{Au}(\mathrm{b})$ represent terminal and bridging Au atoms, respectively.

	$q_{\text {B }}$	$q_{\text {Aust }}$	$q_{\text {Au(b) }}$	WBI		$\mathrm{WBI}_{\mathrm{B}}$	$\mathrm{WBI}_{\text {Au(b) }}$
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}(\mathbf{1})$	-0.58		0.16	B-B	2.77	3.54	1.52
				$\mathrm{B}-\mathrm{Au}(\mathrm{b})$	0.76		
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}(3)$	-0.15		0.29	B-B	1.96	2.70	1.49
				$\mathrm{B}-\mathrm{Au}(\mathrm{b})$	0.74		
$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}{ }^{-}(\mathbf{5})$	-0.68	0.07	0.22	B-B	2.15	3.89	1.34
				$\mathrm{B}-\mathrm{Au}(\mathrm{b})$	0.62		
				$\mathrm{B}-\mathrm{Au}(\mathrm{t})$	1.05		
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{3}(\mathbf{2 5})$	-0.36	0.21	0.31	B-B	1.54	3.30	1.34
				$\mathrm{B}-\mathrm{Au}(\mathrm{b})$	0.62		
				$\mathrm{B}-\mathrm{Au}(\mathrm{t})$	1.11		
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}(\mathbf{1 7})$	-0.73	0.06	0.24	B-B	1.40	3.99	1.30
				$\mathrm{B}-\mathrm{Au}(\mathrm{b})$	0.56		
				$\mathrm{B}-\mathrm{Au}(\mathrm{t})$	0.98		
$\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{5}(27)$	-0.75	0.30, 0.27	0.35	B-B	1.46	3.85	1.30
				$\mathrm{B}-\mathrm{Au}(\mathrm{b})$	0.57		
				$\mathrm{B}-\mathrm{Au}(\mathrm{t})$	0.95, 0.74		

and 5.8% from Au 5 d , whereas the H -based orbital in $\mathrm{B}_{2} \mathrm{H}_{3}^{-}$contains contribution purely from H 1 s .

As typical diboron mixed clusters, $\mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}$and $\mathrm{B}_{2} \mathrm{HAu}_{2}^{-}$ provide two good candidates to compare bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ interaction with bridging $\mathrm{B}-\mathrm{H}-\mathrm{B}$ in one molecule. As shown in Figures 2 b and 2 c , at $\operatorname{CCSD}(\mathrm{T})$ level, the Au-bridged $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)(9)$ is 0.57 eV more stable than the H -bridged $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)(\mathbf{1 0})$, with $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$ (11) and C_{s} $\mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)(\mathbf{1 2})$ lying 0.65 eV and 1.91 eV higher than $\mathrm{C}_{2 \mathrm{v}}$ 9, respectively. Similarly, the Au-bridged $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{HAu}_{2}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)$ (13) lies 0.69 eV lower than the H-bridged $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{HAu}_{2}^{-}$(${ }^{1} \mathrm{~A}$) (14), with $\mathrm{C}_{1} \quad \mathrm{~B}_{2} \mathrm{HAu}_{2}^{-}\left({ }^{1} \mathrm{~A}\right)(\mathbf{1 5})$ and $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{HAu}_{2}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)$ (16) lying 1.77 and 1.89 eV above the ground state. The bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B} 3 \mathrm{c}-2 \mathrm{e}$ bonds in $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}$(9) and $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{HAu}_{2}^{-}$ (13) possess the orbital hybridizations of $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}=0.49(\mathrm{p})_{\mathrm{B}}+$ $0.72\left(\mathrm{sd}^{0.09}\right)_{\mathrm{Au}}+0.49(\mathrm{p})_{\mathrm{B}}$ and $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}=0.48(\mathrm{p})_{\mathrm{B}^{\prime}}+$ $0.69\left(\mathrm{sd}^{0.08}\right)_{\mathrm{Au}}+0.54(\mathrm{p})_{\mathrm{B}}\left(\mathrm{B}^{\prime}\right.$ stands for the B atom connected to terminal H), respectively. Similar to $C_{2} B_{2} A u_{3}^{-}\left({ }^{1} A\right)(5)$, both $\mathrm{C}_{2 \mathrm{v}} 9$ and $\mathrm{C}_{\mathrm{s}} 13$ contain a $\mathrm{B}=\mathrm{B}$ double bond $(\sigma+\pi)$ with the approximate bond lengths of $r_{\mathrm{B}-\mathrm{B}}=1.51 \AA$. The high stability of bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ over bridging $\mathrm{B}-\mathrm{H}-\mathrm{B}$ in these mixed anions can be understood considering the fact that the bridging $\mathrm{Au}\left(6 \mathrm{~s} 5 \mathrm{~d}^{0.08-0.09}\right)$ is much bigger than bridging $\mathrm{H}(1 \mathrm{~s})$ in orbital size and, therefore, better overlaps with the p-p π_{u} orbital of the $\mathrm{B}-\mathrm{B}$ unit (with major contribution coming from the $\mathrm{Au} 5 \mathrm{~d}_{x 2-y 2}$ orbital in $\mathrm{B}-\mathrm{B}$ direction). The $\mathrm{p}-\pi$ character of the $3 \mathrm{c}-2 \mathrm{e}$ bonds in diboron auride clusters and mixed analogues can be clearly seen from their orbital pictures and contour plots, which all contain effective p-p overlaps on the opposite sides of the bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ triangles, as shown in Figure 5.

It is interesting to notice that our calculation produces nearly the same $\mathrm{B}-\mathrm{B}$ bond lengths for the Au -bridged $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}$(5) $\left(r_{\mathrm{B}-\mathrm{B}}=1.53 \AA\right)$ and the unbridged $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{3}^{-}(6)\left(r_{\mathrm{B}-\mathrm{B}}=1.55\right.$ \AA), whereas for the corresponding boron hydride of $\mathrm{B}_{2} \mathrm{H}_{3}^{-}$, the H -bridged $\mathrm{B}-\mathrm{B}$ bond $\left(r_{\mathrm{B}-\mathrm{B}}=1.46 \AA\right.$) in the ground state $\mathrm{C}_{2 \mathrm{v}}$
$\mathrm{B}_{2} \mathrm{H}_{3}{ }^{-}$(similar to C_{2} 5) was obviously shorter than the unbridged $\mathrm{B}-\mathrm{B}\left(r_{\mathrm{B}-\mathrm{B}}=1.56 \AA\right)$ in a $\mathrm{C}_{2 \mathrm{v}}$ local minimum (analogous to $\left.C_{s} \mathbf{6}\right) .{ }^{20,21}$ This situation can be qualitatively explained in terms of the atomic size difference between Au and H : a bridging $\mathrm{Au}(6 \mathrm{~s} 5 \mathrm{~d})$ is much bigger than a bridging $\mathrm{H}(1 \mathrm{~s})$ in size, and therefore, to form a stable $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ bridge in $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}$ (5), the $\mathrm{B}-\mathrm{B}$ bond is obviously elongated by about $0.07 \AA$ to reduce the geometrical strains. This $\mathrm{B}-\mathrm{B}$ bond length elongation agrees with the Wiberg bond order decreasing from WBI $=$ 2.29 in the H -bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{H}_{3}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$ to $\mathrm{WBI}=2.15$ in the Au-bridged $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}\left({ }^{1} \mathrm{~A}\right)$. As indicated in Figure 2, the calculated $\mathrm{B}-\mathrm{B}$ distances in the Au-bridged $\mathrm{C}_{2 \mathrm{v}} 9\left(1.51 \AA\right.$) and C_{s} $13(1.51 \AA)$, all prove to be obviously longer than $\mathrm{B}-\mathrm{B}$ distances in the corresponding H -bridged $\mathrm{C}_{\mathrm{s}} \mathbf{1 0}\left(1.46 \AA\right.$) and C_{2} $14(1.47 \AA)$, respectively, well in line with the fact that the

Table 2. Calculated ADEs (eV) and VDEs (eV) of the Diboron Auride Anions and Mixed Analogues at B3LYP and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ Levels. ADEs of the anions are equivalent to the electron affinities of the corresponding neutrals.

	ADE		VDE	
	B3LYP	$\operatorname{CCSD}(\mathrm{T})$	B3LYP	$\operatorname{CCSD}(\mathrm{T})$
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$	$1.68\left({ }^{2} \mathrm{~B}_{1}\right)$	$1.74\left({ }^{2} \mathrm{~B}_{1}\right)$	$1.70\left({ }^{2} \mathrm{~B}_{1}\right)$	$1.77\left({ }^{2} \mathrm{~B}_{1}\right)$
$\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}{ }^{-}\left({ }^{1} \mathrm{~A}\right)$	$1.72\left({ }^{2} \mathrm{~B}_{1}\right)^{\mathrm{a}}$	$1.74\left({ }^{2} \mathrm{~B}_{1}\right)^{\mathrm{a}}$	$1.81\left({ }^{2} \mathrm{~B}\right)$	$1.89\left({ }^{2} \mathrm{~B}\right)$
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$	$1.47\left({ }^{2} \mathrm{~B}_{1}\right)$	$1.50\left({ }^{2} \mathrm{~B}_{1}\right)$	$1.49\left({ }^{2} \mathrm{~B}_{1}\right)$	$1.55\left({ }^{2} \mathrm{~B}_{1}\right)$
$\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{HAu}_{2}{ }^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)$	$1.61\left(^{2} \mathrm{~A}^{\prime \prime}\right)$	$\left.1.65{ }^{2} \mathrm{~A}^{\prime \prime}\right)$	$1.64\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$	$1.70\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}{ }^{-}\left({ }^{1} \mathrm{~A}_{1}\right)$	$2.98\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)^{\mathrm{b}}$	$2.86\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)^{\mathrm{b}}$	$3.23\left({ }^{2} \mathrm{~A}_{2}\right)$	$3.36\left({ }^{2} \mathrm{~A}_{2}\right)$
$\left.\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{HAu}_{4}{ }^{-}{ }^{1} \mathrm{~A}\right)^{\mathrm{c}}$	$2.99\left({ }^{2} \mathrm{~A}\right)$		$3.39\left({ }^{2} \mathrm{~A}\right)$	

${ }^{\mathrm{a}}$ The final state corresponds to $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{3}\left({ }^{2} \mathrm{~B}_{1}\right)(\mathbf{2 5})$.
${ }^{\mathrm{b}}$ The final state corresponds to $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{5}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)(27)$.
${ }^{\mathrm{c}} \mathrm{CCSD}(\mathrm{T})$ calculations on doublet $\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{HAu}_{4}$ neutrals are beyond the reach of available computing resources.

Figure 5. Three-dimensional views, contour plots, and orbital hybridizations of the $3 \mathrm{c}-2 \mathrm{e} \tau$ bonds in $\mathrm{B}_{2} \mathrm{Au}^{-}(\mathbf{1}), \mathrm{B}_{2} \mathrm{Au}(\mathbf{3}), \mathrm{B}_{2} \mathrm{Au}_{3}{ }^{-}(\mathbf{5}), \mathrm{B}_{2} \mathrm{H}_{2} \mathrm{Au}^{-}(\mathbf{9}), \mathrm{B}_{2} \mathrm{HAu}_{2}{ }^{-}(\mathbf{1 3}), \mathrm{B}_{2} \mathrm{Au}_{5}^{-}(\mathbf{1 7})$, and $\mathrm{B}_{2} \mathrm{HAu}_{4}^{-}(\mathbf{2 1})$ discussed in this work. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Wiberg bond orders of $\mathrm{C}_{2 \mathrm{v}} 9$ (2.16) and $\mathrm{C}_{\mathrm{s}} \mathbf{1 3}$ (2.17) are systematically lower than that of Cs $\mathbf{1 0}$ (2.24) and $\mathrm{C}_{2} \mathbf{1 4}$ (2.20). On the other hand, an -Au terminal proves to cause only minor changes to the attached $\mathrm{B}-\mathrm{B}$ units in bond lengths, as shown in the typical cases of the Au-terminated $\mathrm{C}_{\mathrm{s}} 7$ and $\mathrm{C}_{\mathrm{s}} \mathbf{1 6}$, which have very similar $B-B$ bond lengths with the H-terminated $B-B$ bond in $C_{s} \mathbf{1 2}$. The two factors work together to make the
$B-B$ bond length in the bridged $C_{2} B_{2} \mathrm{Au}_{3}^{-}$(5) only slightly shorter than $B-B$ bond in the unbridged $C_{s} B_{2} A u_{3}^{-}$(6). Similar situations happen to the Au -bridged $\mathrm{B}_{2} \mathrm{Au}^{-}$discussed earlier and $\mathrm{B}_{2} \mathrm{Au}_{5}^{-}$detailed in the next section. The B3LYP results obtained above well parallel the results previously reported for the corresponding boron hydrides ${ }^{20-23}$ and invite experimental and more accurate theoretical confirmations.

$\mathrm{B}_{2} \mathrm{~A} u_{5}^{-}$and $\mathrm{B}_{2} \boldsymbol{H A} u_{4}^{-}$

We now turn to $\mathrm{B}_{2} \mathrm{Au}_{5}^{-}$and its mixed analogue $\mathrm{B}_{2} \mathrm{HAu}_{4}^{-}$. $\mathrm{B}_{2} \mathrm{Au}_{5}^{-}$has the high-symmetry ground state of the Au-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)(\mathbf{1 7})$ that lies $0.64,0.62$, and 1.42 eV lower than $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)(\mathbf{1 8}), \mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}\left({ }^{1} \mathrm{~A}^{\prime}\right)(\mathbf{1 9})$, and $\mathrm{D}_{2 \mathrm{~d}} \mathrm{~B}_{2} \mathrm{Au}_{5}^{-}$ $\left({ }^{1} \mathrm{~A}_{1}\right)$ (20) at $\operatorname{CCSD}(\mathrm{T})$, respectively. $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}$(17) is the diboron auride analogue of the H -bridged $\mathrm{C}_{2 \mathrm{v}} \quad \mathrm{B}_{2} \mathrm{H}_{5}^{-22}$ The $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}$ bond in $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}$possesses the orbital hybridization of $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}}=0.54(\mathrm{p})_{\mathrm{B}}+0.65\left(\mathrm{sd}^{0.04}\right)_{\mathrm{Au}}+0.54(\mathrm{p})_{\mathrm{B}}$. The two sp^{2}-hybridized B atoms in $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}^{-}$form a $\mathrm{B}-\mathrm{B} \sigma$ bond with $r_{\mathrm{B}-\mathrm{B}}=1.65 \AA$ in the $\mathrm{Au}_{2} \mathrm{~B}-\mathrm{BAu}_{2}$ plane, whereas the $\mathrm{Au} 6 \mathrm{~s}^{1}$ electron and the extra electron of the anion form the bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B} 3 \mathrm{c}-2 \mathrm{e}$ interaction with $r_{\mathrm{B}-\mathrm{Au}}(\mathrm{b})=2.25 \AA$. Similar to the H-bridged $\mathrm{C}_{2 \mathrm{v}} \quad \mathrm{B}_{2} \mathrm{H}_{5},{ }^{20,23} \quad \mathrm{~B}_{2} \mathrm{Au}_{5}$ neutral favors the Au bridged $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{Au}_{5}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)(27)$ over the slightly off-planed C_{s} $\mathrm{B}_{2} \mathrm{Au}_{5}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)(\mathbf{2 8})$ by 0.85 eV . It is interesting to notice that that bridging Au atoms in the whole $\mathrm{B}_{2} \mathrm{Au}_{n}{ }^{-/ 0}$ series ($n=1,3,5$) have considerably high total bond orders between $\mathrm{WBI}_{\mathrm{Au}(\mathrm{b})}=$ 1.30-1.52 (Table 1), indicating that effective multi-center interactions (3c-2e) exist in these diboron auride clusters. Similar situation exists in their mixed analogues.

The Au-bridged $\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{HAu}_{4}^{-}\left({ }^{1} \mathrm{~A}\right)(\mathbf{2 1})$ appears to lie 0.71 eV lower than the H -bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{HAu}_{4}^{-}\left({ }^{1} \mathrm{~A}_{1}\right)(\mathbf{2 3})$ and 0.43 eV and 0.88 eV lower than $\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{HAu}_{4}^{-}\left({ }^{1} \mathrm{~A}\right)(\mathbf{2 2})$ and $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{2} \mathrm{HAu}_{4}^{-}$ $\left({ }^{1} \mathrm{~A}^{\prime}\right)(\mathbf{2 4})$ at $\operatorname{CCSD}(\mathrm{T})$, respectively, indicating again that a bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ unit is favored over a bridging $\mathrm{B}-\mathrm{H}-\mathrm{B}$ in mixed anions. With two unsymmetrical B centers, $\mathrm{C}_{1} \mathrm{~B}_{2} \mathrm{HAu}_{4}^{-}$
(21) with $r_{\mathrm{B}^{\prime}-\mathrm{B}}=1.65 \AA$ possesses the $3 \mathrm{c}-2 \mathrm{e}$ bond of $\tau_{\mathrm{B}-\mathrm{Au}-\mathrm{B}^{\prime}}$ $=0.49(\mathrm{p})_{\mathrm{B}^{\prime}}+0.68\left(\mathrm{sd}^{0.05}\right)_{\mathrm{Au}}+0.54(\mathrm{p})_{\mathrm{B}}$. There exists a general trend to notice that, in the orbital hybridizations of the 3c-2e bonds shown in Figure 5, the B^{\prime} centers directly connected to H terminals have slightly lower orbital coefficients (0.48-0.49) and, therefore, less contribution to the multi-center interactions than B centers directly bonded to Au-terminals ($0.50-0.54$).

Thermodynamic Stabilities and Electron Detachment Energies

Concerning the thermodynamic stabilities of the diboron auride clusters studied in this work, at $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ level, we calculate the atomization energies (AEs) of the low lying $\mathrm{B}_{2} \mathrm{Au}_{n}$ neutral isomers compared with that of the corresponding $\mathrm{B}_{2} \mathrm{H}_{n}$ $(n=1,3,5)^{20,23}$

$\mathrm{B}_{2} \mathrm{Au}\left(\mathrm{C}_{\infty v},{ }^{4} \Sigma_{\mathrm{g}}^{-}\right)(\mathbf{4})=2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)+\mathrm{Au}\left({ }^{2} \mathrm{~S}\right)$	$\Delta E=153.4 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{B}_{2} \mathrm{H}\left(\mathrm{C}_{\infty v},{ }^{4} \Sigma_{\mathrm{g}}^{-}\right)=2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)+\mathrm{H}\left({ }^{2} \mathrm{~S}\right)$	$\Delta E=167.9 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{B}_{2} \mathrm{Au}_{3}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{2} \mathrm{~B}_{1}\right)(\mathbf{2 6})=2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)+3 \mathrm{Au}\left({ }^{2} \mathrm{~S}\right)$	$\Delta E=319.8 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{B}_{2} \mathrm{H}_{3}\left(\mathrm{C}_{2 \mathrm{v}}{ }^{2}{ }^{2} \mathrm{~B}_{1}\right)=2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)+3 \mathrm{H}\left({ }^{2} \mathrm{~S}\right)$	$\Delta E=351.8 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{B}_{2} \mathrm{Au}_{5}\left(\mathrm{C}_{\mathrm{s}},{ }^{2} \mathrm{~A}^{\prime \prime}\right)(\mathbf{2 7})=2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)+5 \mathrm{Au}\left({ }^{2} \mathrm{~S}\right)$	$\Delta E=463.1 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{B}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{2} \mathrm{~A}_{1}\right)=2 \mathrm{~B}\left({ }^{2} \mathrm{P}\right)+5 \mathrm{H}\left({ }^{2} \mathrm{~S}\right)$	$\Delta E=490.7 \mathrm{kcal} / \mathrm{mol}$

and the fragmentation energies (FEs) required to remove an Au^{-}anion or Au atom from $\mathrm{B}_{2} \mathrm{Au}_{n}^{-}(n=1,3,5)$ in the following processes

$$
\begin{array}{ll}
\mathrm{B}_{2} \mathrm{Au}^{-}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{1} \mathrm{~A}_{1}\right)(\mathbf{1})=\mathrm{B}_{2}\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)+\mathrm{Au}^{-}\left({ }^{1} \mathrm{~S}\right) & \Delta E=81.2 \mathrm{kcal} / \mathrm{mol} \\
\mathrm{~B}_{2} \mathrm{Au}^{-}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{1} \mathrm{~A}_{1}\right)(\mathbf{1})=\mathrm{B}_{2}^{-}\left({ }^{4} \Sigma_{\mathrm{g}}^{-}\right)+\mathrm{Au}\left({ }^{2} \mathrm{~S}\right) & \Delta E=83.0 \mathrm{kcal} / \mathrm{mol} \\
\mathrm{~B}_{2} \mathrm{Au}_{3}^{-}\left(\mathrm{C}_{2},{ }^{1} \mathrm{~A}\right)(\mathbf{5})=\mathrm{B}_{2} \mathrm{Au}_{2}\left(\mathrm{D}_{\infty \mathrm{h}},{ }^{3} \Sigma_{\mathrm{g}}^{-}\right)+\mathrm{Au}^{-}\left({ }^{1} \mathrm{~S}\right) & \Delta E=77.1 \mathrm{kcal} / \mathrm{mol} \\
\mathrm{~B}_{2} \mathrm{Au}_{3}^{-}\left(\mathrm{C}_{2},{ }^{1} \mathrm{~A}\right)(\mathbf{5})=\mathrm{B}_{2} \mathrm{Au}_{2}^{-}\left(\mathrm{C}_{2 \mathrm{~h}},{ }^{2} \mathrm{~A}_{\mathrm{u}}\right)+\mathrm{Au}^{-}\left({ }^{2} \mathrm{~S}\right) & \Delta E=89.4 \mathrm{kcal} / \mathrm{mol} \\
\mathrm{~B}_{2} \mathrm{Au}_{5}^{-}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{1} \mathrm{~A}_{1}\right)(\mathbf{1 7})=\mathrm{B}_{2} \mathrm{Au}_{4}\left(\mathrm{D}_{2 \mathrm{~d}},{ }^{1} \mathrm{~A}_{1}\right)+\mathrm{Au}^{-}\left({ }^{1} \mathrm{~S}\right) & \Delta E=79.1 \mathrm{kcal} / \mathrm{mol} \\
\mathrm{~B}_{2} \mathrm{Au}_{5}^{-}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{1} \mathrm{~A}_{1}\right)(\mathbf{1 7})=\mathrm{B}_{2} \mathrm{Au}_{4}^{-}\left(\mathrm{D}_{2},{ }^{2} \mathrm{~B}_{3}\right)+\mathrm{Au}\left({ }^{2} \mathrm{~S}\right) & \Delta E=87.7 \mathrm{kcal} / \mathrm{mol}
\end{array}
$$

in which the linear $\left.D_{\infty h} B_{2}{A u_{2}}_{2}{ }^{3} \Sigma g^{-}\right)$, zigzag $C_{2 h} B_{2} \mathrm{Au}_{2}^{-}\left({ }^{2} \mathrm{~A}_{\mathrm{u}}\right)$, the staggered $D_{2 d} B_{2} \mathrm{Au}_{4}\left({ }^{1} \mathrm{~A}_{1}\right)$, and the slightly distorted ethylenelike $D_{2} B_{2} A u_{4}^{-}\left({ }^{2} B_{3}\right)$ are the lowest energy isomers obtained for the corresponding fragments. As shown above, $\mathrm{AE}=153.4 \mathrm{kcal} /$ mol for $\mathrm{C}_{\infty \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}(\mathbf{4}), 319.8 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{3}(\mathbf{2 6})$, and $463.1 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{5}$ (27). According to the relative energies calculated at $\operatorname{CCSD}(\mathrm{T}), \mathrm{AE}=149.9 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{B}_{2} \mathrm{Au}(3)$ and $328.8 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}_{3}(\mathbf{2 5})$. These AEs appear to be comparable (though systematically lower by $5 \sim 10 \%$) with the corresponding values of diboron hydrides $\mathrm{B}_{2} \mathrm{H}_{n}(n=1,3,5)$ at the same theoretical level, suggesting that $\mathrm{B}_{2} \mathrm{Au}_{n}$ clusters be thermodynamically stable. Removing the bridging Au of the ground state $\mathrm{B}_{2} \mathrm{Au}_{n}^{-}$anions (Figs. 1-3) to produce an Au^{-}plus a $\mathrm{B}_{2} \mathrm{Au}_{n-1}$ neutral prove to have the lowest fragmentation energies in various processes, with $\mathrm{FE}=81.2 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{2} \mathrm{Au}^{-}(\mathbf{1}), 77.1 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{Au}_{3}^{-}$(5), and $79.1 \mathrm{kcal} /$ mol for $\mathrm{C}_{2 v} \mathrm{~B}_{2} \mathrm{Au}_{5}$ (17). Fragmentations in $\mathrm{B}_{2} \mathrm{Au}_{3}^{-}\left(\mathrm{C}_{2},{ }^{1} \mathrm{~A}\right)=$
$\mathrm{B}_{2}\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)+\mathrm{Au}_{3}^{-}\left(\mathrm{D}_{\infty \mathrm{h}},{ }^{1} \Sigma_{\mathrm{g}}^{+}\right) \quad$ with $\mathrm{FE}=146.0 \mathrm{kcal} / \mathrm{mol}$, $\mathrm{B}_{2} \mathrm{Au}_{5}^{-}\left(\mathrm{C}_{2 \mathrm{v}}{ }^{1}{ }^{1} \mathrm{~A}_{1}\right)=\mathrm{B}_{2}\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)+\mathrm{Au}_{5}^{-}\left(\mathrm{C}_{2 \mathrm{v}},{ }^{1} \mathrm{~A}_{1}\right)$ with $\mathrm{FE}=199.5$ $\mathrm{kcal} / \mathrm{mol}$, and other processes involving the breakdown of $\mathrm{B}-\mathrm{B}$ bonds appear to be much less favorable in energies.

We also calculate the ADE and VDE values of the anions possible to be measured in PES experiments. As can be seen from Table 2, B3LYP and CCSD(T)//B3LYP methods agree well in producing the one-electron detachment energies of these anions. For $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}$with $m+n=1$ and 3 , the calculated ADEs and VDEs lie between 1.47 and 1.89 eV , whereas for $m+n=5$, the corresponding values seem to be obviously higher (2.86-3.39 eV). The high-electron detachment energies of $\mathrm{B}_{2} \mathrm{Au}_{5}^{-}$and $\mathrm{B}_{2} \mathrm{HAu}_{4}^{-}$anions may be related with the fact that they have the same number of valence electrons as the wellknown diborane $\mathrm{B}_{2} \mathrm{H}_{6}$. The electron binding energies of these anions fall within the energy range of the conventional excitation laser ($266 \mathrm{~nm}, 4.661 \mathrm{eV}$) in PES measurements. ${ }^{6-8}$

Summary

Ab initio theoretical evidences obtained in this work strongly suggest that bridging gold atoms exist in diboron aurides $\mathrm{B}_{2} \mathrm{Au}_{n}{ }^{-/ 0}(n=1,3,5)$ and their $\mathrm{B}_{2} \mathrm{H}_{m} \mathrm{Au}_{n}^{-}$mixed analogues (m $+n=3,5)$ that all prove to possess a $\mathrm{B}-\mathrm{Au}-\mathrm{B} 3 \mathrm{c}-2 \mathrm{e}$ bond. Bridging $\mathrm{B}-\mathrm{Au}-\mathrm{B}$ units appear to be favored in energy over $B-H-B$ in mixed clusters. $B-B$ units with the $B-B$ distances of $1.46-1.68 \AA$ are well maintained in most of the low lying isomers obtained in this work (except $D_{2 d}$ 20). Detailed orbital analyses indicate that Au 6 s makes $92-96 \%$ and Au 5 d makes 8-4\% contribution to the Au-based orbitals in bridging $B-A u-B$ units, partially reflecting the relativistic effect of gold. Diboron auride clusters and their mixed analogues are thermodynamically stable and possible to be produced by laser ablation of $\mathrm{B}-\mathrm{Au}$ binary targets and characterized with PES spectra. The concept of $B-A u-B 3 c-2 e$ bonds proposed in this work provides an interesting bonding mode for electron-deficient systems and helps to design new materials and catalysts with highly dispersed Au atoms. ${ }^{6-9}$ Initial investigations indicate that both the double Au-bridged $\mathrm{D}_{2 \mathrm{~h}} \mathrm{~B}_{2} \mathrm{Au}_{6}$ and $\mathrm{D}_{2 \mathrm{~h}} \mathrm{~B}_{2} \mathrm{Au}_{6}{ }^{-}$similar to the double H -bridged $\mathrm{D}_{2 \mathrm{~h}} \mathrm{~B}_{2} \mathrm{H}_{6}$ are true minima of the systems and $\mathrm{Al}_{2} \mathrm{Au}_{n}{ }^{-/ 0}$ and $\mathrm{Ga}_{2} \mathrm{Au}_{n}{ }^{-/ 0}$ clusters ($n=1-6$) possess certain similarities and differences with $\mathrm{B}_{2} \mathrm{Au}_{n}{ }^{-/ 0}$.

References

1. Pyykko P. Angew Chem Int Ed 2002, 41, 3573 and references therein.
2. Cotton F. A.; Wikinson G.; Murillo C. A.; Bochmann M. Advanced Inorganic Chemistry, 6th ed., Wiley: New York, 1999.
3. Schwarz H. Angew Chem Int Ed 2003, 42, 4442 and references therein.
4. Gagliardi L. J Am Chem Soc 2003, 1257504.
5. (a) Hall K. P.; Mingos D. M. P. Prog Inorg Chem 1984, 32 237; (b) Lauher J. W.; Wald K. J Am Chem Soc 1981, 103, 7648;
(c) Burdett J. K.; Eisentein O.; Schweizer W. B. Inorg Chem 1994, 33, 3261.
6. Kiran B.; Li X.; Zhai H.-J.; Cui L.-F.; Wang L.-S. Angew Chem Int Ed 2004, 43, 2125.
7. (a) Li X.; Kiran B.; Wang L.-S. J Phys Chem A 2005, 109, 4366; (b) Kiran B.; Li X.; Zhai H.-J.; Wang L.-S. J Chem Phys 2006, 125, 133204.
8. Zhai H.-J.; Wang L.-S.; Zubarev D. Y.; Boldyrev A. I. J Phys Chem A 2006, 110, 1689.
9. Zubarev D. Y.; Li J.; Wang L.-S.; Boldyrev A.-I. Inorg Chem 2006, 45, 5269.
10. Pyykko P.; Zhao Y. Chem Phys Lett 1991, 117, 103.
11. Avramopoulos A.; Papadopoulos M. G.; Sadlej A. J Chem Phys Lett 2003, 370, 765.
12. Lu, H.-G. In GXYZ Ver. 1.0, A Random Cartesian Coordinates Generating Program, Shanxi University: Taiyuan, 2008.
13. (a) Becke A. D. J Chem Phys 1993, 98, 5648; (b) Lee C.; Yang W.; Parr R. G. Phys Rev B 1988, 37, 785.
14. (a) Head-Gordon M.; Pople J. A.; Frisch, M. J. Chem Phys Lett 1988, 153, 503; (b) Frisch M. J.; Head-Gordon M.; Pople J. A. Chem Phys Lett 1990, 166, 275; (c) Frisch M. J.; Head-Gordon M.; Pople J. A. Chem Phys Lett 1990, 166, 281; (d) Head-Gordon M.; Head -Gordon T. Chem Phys Lett 1994, 220, 122; (e) Saebo S.; Almlof J. Chem Phys Lett 1989, 154, 83.
15. (a) Cizek J. Adv Chem Phys 1969, 14, 35; (b) Scuseria G. E.; Schaefer H. F. J Chem Phys 1989, 90, 3700; (c) Pople J. A.; HeadGordon M.; Raghavachari K. J Chem Phys 1987, 87, 5968.
16. (a) Dolg M.; Wedig U.; Stoll H.; Preuss, H. J. Chem Phys 1987, 86, 866; (b) Martin J. M. L.; Sundermann A. J Chem Phys 2001, 114, 3408.
17. Kendall R. A.; Dunning T. H.; Harrison R. J. J Chem Phys 1992, 96 6796.
18. Frisch M. J. et al. Gaussian 03, revision, A.1; Gaussian, Inc.: Pittsburgh, PA, 2003.
19. Alexandrova A. N.; Boldyrev A. I.; Zhai H.-J.; Wang L.-S. Coord Chem Rev 2006, 250, 2811.
20. Liu J.; Aeschleman J.; Rajan L. M.; Che C.; Ge Q. In Materials Issues in a Hydrogen Economy; Jena P.; Kandalam A.; Sun Q., Eds.; World Scientific Publishing Co. Ptc. Ltd: Singapore; 2009, pp. 234.
21. (a) Lammertsma K.; Ohwada T. J Am Chem Soc 1996, 118, 7247; (b) Krempp M.; Damrauer R.; DePuy C. H.; Keheyan Y. J Am Chem Soc 1994, 116, 3629; (c) Qu Z.-W.; Li Z.-S.; Ding Y.-H.; Sun C.-C. J Phys Chem A 2000, 104, 11952.
22. Sun Y.-B.; Li Z.-S.; Huang X.-R.; Sun C.-C. Chem J Chinese Universities 2002, 23, 1542.
23. (a) Longenecker J. G.; Mebel A. M.; Kaiser R. I.; Inorg Chem 2007, 46, 5739; (b) Trachtman M.; Bock C. W.; Niki H.; Mains G. J. Struct Chem 1990, 1, 171; (c) Ruscic B.; Schwarz M.; Berkowitz J. J Chem Phys 1989, 91, 4183.

[^0]: Correspondence to: S.-D. Li; e-mail: lisidian@yahoo.com

