$\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}_{2}(\mathrm{BS})_{2}^{-12-}$ and $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$: Boron Sulfide Clusters Containing BB Multiple Bonds and B^{-}Tetrahedral Centers

WEN-ZHI YAO, ${ }^{1}$ JIN-CHANG GUO, ${ }^{2}$ HAI-GANG LU, ${ }^{1}$ SI-DIAN LI ${ }^{1,2}$
${ }^{1}$ Institue of Molecular Sciences, Shanxi University, Taiyuan, Shanxi 030001, People's Republic of China
${ }^{2}$ Institute of Materials Sciences and Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi 034000, People's Republic of China

Received 13 August 2009; accepted 17 August 2009
Published online 25 November 2009 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/qua. 22452

Abstract

A density functional theory investigation on the geometrical and electronic properties of $\mathrm{B}_{4} 5_{2}^{0 /-/ 2-}\left(\mathrm{B}_{2}(\mathrm{BS})_{2}^{0 /-/ 2-}\right)$ and $\mathrm{B}_{5} \mathrm{~S}_{4}^{0 /-}\left(\mathrm{B}(\mathrm{BS})_{4}^{0-}\right)$ clusters has been performed in this work. Both the doublet $\mathrm{B}_{2}(\mathrm{BS})_{2}^{-}\left([\mathrm{S}=\mathrm{B}-\mathrm{B}=\mathrm{B}-\mathrm{B}=\mathrm{S}]^{-}\right)\left(\mathrm{D}_{\infty \mathrm{h}}{ }^{2} \Pi_{\mathrm{u}}\right)$ and the singlet $\mathrm{B}_{2}(\mathrm{BS})_{2}^{2-}\left([\mathrm{S}=\mathrm{B}-\mathrm{B}=\mathrm{B}-\mathrm{B}=\mathrm{S}]^{2-}\right)\left(\mathrm{D}_{\infty \mathrm{h}}{ }^{1}{ }^{1} \Sigma_{\mathrm{g}}^{+}\right)$proved to have perfect linear ground-state structures containing a multiply bonded $B B$ core ($B \equiv B$ or $B \equiv B$) terminated with two $B S$ groups, while $T_{d} B(B S)_{4}^{-}$turned out to possess a perfect B^{-}tetrahedral center directly corrected to four BS groups, similar to the corresponding boron hydride molecules of $\mathrm{D}_{\propto h} \mathrm{~B}_{2} \mathrm{H}_{2}^{-}, \mathrm{D}_{\infty h} \mathrm{~B}_{2} \mathrm{H}_{2}^{2-}$, and $\mathrm{T}_{\mathrm{d}} \mathrm{BH}_{4}^{-}$, respectively. $\mathrm{B}_{4} \mathrm{~S}_{2}$ and $\mathrm{B}_{5} \mathrm{~S}_{4}$ neutrals, however, appeared to be much different: they favor a planar fan-shaped $C_{2 v} B_{4} S_{2}$ (a di-S-bridged B_{4} rhombus) and a planar kite-like $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{5} \mathrm{~S}_{4}$ (a di-S-bridged B_{3} triangle bonded to two BS groups), respectively. One-electron detachment energies and symmetrical stretching vibrational frequencies are calculated for $D_{\infty h} B_{2}(B S)_{2}^{-}$and T_{d} $\mathrm{B}(\mathrm{BS})_{4}^{-}$monoanions to facilitate their future characterizations. Neutral salts of $\mathrm{B}_{2}(\mathrm{BS})_{2} \mathrm{Li}_{2}$ with an elusive $\mathrm{B} \equiv \mathrm{B}$ triple bond and $\mathrm{B}(\mathrm{BS})_{4} \mathrm{Li}$ containing a tetrahedral B^{-}center are predicted possible to be targeted in experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2689-2696, 2010

Key words: boron sulfide clusters; ab initio calculations; geometries; electronic structures; electron detachment energies; photoelectron spectroscopy

[^0]
1. Introduction

Boron oxide clusters $\mathrm{B}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$ have attracted considerable attention in recent years because of their importance in both fundamental research and materials sciences. In four recent articles [1-4], Zhai, Yao, Li, and Wang performed combined photoelectron spectroscopy (PES) and ab initio theory investigations on a series of boron oxide clusters in gas phases, including the linear $\mathrm{C}_{\infty \mathrm{v}} \mathrm{BO}^{-}$and $\mathrm{D}_{\infty h} \mathrm{BO}_{2}^{-}$[1], linear $\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}(\mathrm{BO})_{2}^{-}$ and triangular $\mathrm{D}_{3 \mathrm{~h}} \quad \mathrm{~B}(\mathrm{BO})_{3}^{-} \quad[2]$, linear $\mathrm{D}_{\infty h}$ $\mathrm{B}_{2}(\mathrm{BO})_{2}^{0 /-/ 2-}$ [3], and tetrahedral $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BO})_{4}^{-}$[4]. These studies confirmed the existence of BO groups (boronyls) and $B B$ multiple bonds ($B=B$, $B \equiv B$, and $B \equiv B$) in a wide range of boron oxide clusters and revealed a clear structural link between boron oxide clusters $\mathrm{B}_{m}(\mathrm{BO})_{n}$ and the corresponding boron hydride molecules $\mathrm{B}_{m} \mathrm{H}_{n}$. Recent theoretical studies performed by other groups well support this conclusion [5, 6]. Considering the similarities between $S\left(3 s^{2} 3 p^{4}\right)$ and $\mathrm{O}\left(2 s^{2} 2 p^{4}\right)$ in valence electron configurations, our group performed recently a density functional theory (DFT) investigation on linear $\mathrm{BS}^{-}, \mathrm{BS}_{2}^{-}$, and $\mathrm{B}(\mathrm{BS})_{2}^{-}$and triangular $\mathrm{B}(\mathrm{BS})_{3}^{-}$[7]. Close similarities were obtained between BS and $\mathrm{BO} \sigma$ radicals and $\mathrm{B}(\mathrm{BS})_{n}^{0 /-}$ and $\mathrm{B}(\mathrm{BO})_{n}^{0 /-}(n=2,3)$ microclusters. However, there have been no experimental or theoretical investigations on $\mathrm{B}_{m}(\mathrm{BS})_{n}$ clusters with $m>1$ or $n>3$ reported in literature $[7,8]$. In this work, we extend the research at ab initio levels to novel boron sulfide clusters including $\mathrm{B}_{4} \mathrm{~S}_{2}^{0 /-/ 2-}\left(\mathrm{B}_{2}(\mathrm{BS})_{2}^{0 /-/ 2-}\right)$ and $\mathrm{B}_{5} \mathrm{~S}_{4}^{0 /-}\left(\mathrm{B}(\mathrm{BS})_{4}^{0 /-}\right)$ at different charged states. Both $\mathrm{D}_{\infty} \quad \mathrm{B}_{2}(\mathrm{BS})_{2}^{-}$monoanion ($[\mathrm{S}=\mathrm{B}-\mathrm{B} \equiv \mathrm{B}-\mathrm{B}=\mathrm{S}]^{-}$) and $\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}^{2-}$ dianion ($[\mathrm{S}=\mathrm{B}-\mathrm{B} \equiv \mathrm{B}-\mathrm{B}=\mathrm{S}]^{2-}$) turned out to possess perfect linear ground-state structures containing a multiply bonded BB core ($B \equiv B$ or $B \equiv B$) terminated with two $B S$ groups, while $\mathrm{B}(\mathrm{BS})_{4}^{-}$proved to have a perfect tetrahedral geometry with a B^{-}center directly bonded to four BS groups, similar to the corresponding boron hydride molecules of $\mathrm{D}_{\infty h} \mathrm{~B}_{2} \mathrm{H}_{2}^{-}, \mathrm{D}_{\infty h} \mathrm{~B}_{2} \mathrm{H}_{2}^{2-}$, and $\mathrm{T}_{\mathrm{d}} \mathrm{BH}_{4}^{-}$, respectively. However, the ground states of their neutrals proved to be much different: $\mathrm{B}_{4} \mathrm{~S}_{2}$ favored a planar fan-shaped $\mathrm{C}_{2 \mathrm{v}}$ structure (a di-Sbridged B_{4} rhombus), while $B_{5} S_{4}$ possessed a planar kite-like $C_{2 v}$ geometry (a di-S-bridged B_{3} triangle connected to two BS groups). These molecular fragments could be relevant for matrix spectroscopy or possibly in mass spectroscopy of boron
sulfide solids. As B-S binary compounds were more volatile than their $\mathrm{B}-\mathrm{O}$ analogies and investigation of their structures and thermodynamic properties was believed to be greatly facilitated [8], the boron sulfide clusters theoretically studied in this work are expected to be synthesized and characterized in future experiments.

2. Computational Methods

DFT structural optimizations and frequency analyses of boron sulfide clusters were performed using the hybrid B3LYP procedure [9] with the Dunning's all-electron basis (aug-cc-pVTZ) [10] implemented in Gaussian 03 program [11]. Extensive structure searches have been performed on these small clusters to determine their groundstate structures, starting from either the geometries of the corresponding boron oxide clusters [3, 4] without symmetry constrains or arbitrarily designed initial structures with specific symmetries. Energy refinements were achieved using the coupled cluster method including triple excitations (CCSD (T)) [12] at the B3LYP structures with the same basis to determine the relative stabilities of the low-lying isomers more accurately. Adiabatic detachment energies (ADEs) were calculated as the energy differences between the anions and the corresponding neutrals at their ground-state structures, while the vertical detachment energies (VDEs) as the energy differences between the anions and their neutrals at the ground-state structures of the anions. One-electron detachment energies of the monoanions were also approximated with the outer valence Green function approach (OVGF(full)) [13]. Figure 1 shows the ground-state structures of linear $\mathrm{B}_{2}(\mathrm{BS})_{2}^{-/ 2-}$ and the fan-shaped $\mathrm{B}_{4} \mathrm{~S}_{2}$. Figure 2 depicts the lowlying isomers of $\mathrm{B}_{4} \mathrm{~S}_{2}^{0 /-92-}$ at different charged states. Figure 3 illustrates the π and σ BB multiple bonding within the B_{2} cores and the $\mathrm{B}-\mathrm{B} \sigma$ single bonds between the B_{2} core and the two $B S$ terminals in linear $\mathrm{B}_{2}(\mathrm{BS})_{2}^{0 /-/ 2-}$. Figure 4 shows the transition state of $\mathrm{D}_{2 \mathrm{~h}} \mathrm{~B}_{4} \mathrm{~S}_{2} \mathrm{Li}_{2}$ and the ground state of $\mathrm{C}_{2 \mathrm{~h}} \mathrm{~B}_{4} \mathrm{~S}_{2} \mathrm{Li}_{2}$ which contain a $\mathrm{B} \equiv \mathrm{B}$ triple bond at the center. Figure 5 depicts the ground-state structures of tetrahedral $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$, tetrahedral T_{d} $\mathrm{C}(\mathrm{BS})_{4}$, the Li^{+}-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{5} \mathrm{~S}_{4} \mathrm{Li}$, and the planar kite-like $B_{5} S_{4}$, while Figure 6 shows the low-lying isomers of $\mathrm{B}_{5} \mathrm{~S}_{4}^{0 /-}$. The four $\mathrm{B}-\mathrm{B} \sigma$ orbitals of $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$are illustrated in Figure 7. Table I summarizes the calculated electronic properties and

$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{4} \mathrm{~S}_{2}\left({ }^{1} \mathrm{~A}_{1}\right)$
$\left.\left.0^{1014}\right)^{1200}\right)^{525} \longrightarrow 0=0$
$\mathrm{D}_{\mathrm{oh}} \mathrm{B}_{2}(\mathrm{BS})_{2}\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)$

FIGURE 1. Ground-state structures of linear $B_{2}(B S)_{2}^{-}$, linear $B_{2}(B S)_{2}^{2-}$, and the fan-shaped $C_{2 v} B_{4} S_{2}$ at B3LYP with bond lengths indicated in \AA. Linear triplet $B_{2}(B S)_{2}$ is also shown for comparison. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
symmetrical stretching vibrational frequencies of the most concerned high symmetry clusters. Table II tabulates the calculated one-electron detachment energies of $\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}_{2}(\mathrm{BS})_{2}^{-}$and $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$.

3. Results and Discussion

3.1. $\mathbf{B}_{\mathbf{2}}(\mathrm{BS})_{2}^{-}, \mathbf{B}_{\mathbf{2}}(\mathbf{B S})_{2}^{\mathbf{2 -}}$, AND $\mathbf{B}_{4} \mathbf{S}_{\mathbf{2}}$

We start from boron sulfide anions possible to be observed in PES experiments first. As can be seen from Figures 1 and 2, analogous to $\mathrm{D}_{\infty \mathrm{h}}$ $\mathrm{B}_{2}(\mathrm{BO})_{2}^{-}$and $\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}_{2}(\mathrm{BO})_{2}{ }^{2-3}$, both the ground states of doublet $D_{\infty h} B_{2}(B S)_{2}^{-}\left({ }^{2} \Pi_{u}\right)$ and singlet $\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}_{2}(\mathrm{BS})_{2}^{2-}\left({ }^{1} \Sigma_{\mathrm{g}}^{+}\right)$possess a perfect linear geometry (1) lying at least 0.38 and 0.78 eV lower than other low-lying isomers (2-8). For $\mathrm{B}_{4} \mathrm{~S}_{2}^{-}$monoanion, $C_{2 v} 2$ and $C_{2 v} 6$ both contain an S- or SBSbridged B_{3} triangle [14], while all other low-lying isomers ($3,4,5,7$, and 8) possess a rhombus B_{4} core [14] with S bridges or S terminals. $\mathrm{B}_{4} \mathrm{~S}_{2}^{2-}$ dia-
nion possesses similar low-lying structures in a different energy order. However, unlike $\mathrm{B}_{4} \mathrm{O}_{2}$ which has a clear linear triplet ground state $[\mathrm{O}=\mathrm{B}-\mathrm{B}=\mathrm{B}-\mathrm{B}=\mathrm{O}][3]$, the ground state of $\mathrm{B}_{4} \mathrm{~S}_{2}$ neutral turned out to be the planar fan-shaped $C_{2 v} 7\left({ }^{1} \mathrm{~A}_{1}\right)$ (a di-S-bridged rhombus $\left.\mathrm{B}_{4}\right)$, with the linear triplet $D_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}\left(1,{ }^{3} \Sigma_{\mathrm{g}}^{-}\right)$serving as a local minimum lying 0.55 eV higher in energy. In fact, both the di-S-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{4} \mathrm{~S}_{2}$ (4) and $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{B}_{4} \mathrm{~S}_{2}$ (8) also lay lower than linear $\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}(1)$ by 0.18 eV and 0.34 eV , respectively. Concerning the bond length variations in the optimized linear $[S=B-B=B-B=S]^{0 /-/ 2-}$ chains, it is interesting to notice that, with the molecular net charges increasing from $0,-1$, to -2 , the BB multiple bond lengths within the B_{2} core decease from $1.522 \AA, 1.497 \AA$, to $1.491 \AA$, the $B-B$ single bonds between the B_{2} core and BS groups decrease from $1.600 \AA, 1.584 \AA$, to $1.569 \AA$, while the $B-S$ distances within the BS groups increase from 1.614 $\AA, 1.647 \AA$, to $1.694 \AA$ (see Fig. 1). This situation is very similar to that observed in $\mathrm{B}_{2}\left(\mathrm{BO}_{2}\right)_{2}^{0 /-/ 2-}$

FIGURE 2. Low-lying isomers obtained $\mathrm{B}_{4} \mathrm{~S}_{2}^{0 /-/ 2-}$ clusters in the increasing energy order of $\mathrm{B}_{4} \mathrm{~S}_{2}^{-}$, with energies relative to the linear $1(\Delta E, \mathrm{eV})$ indicated at $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ level. The lowest vibrational frequencies $\left(V_{\text {min }}, \mathrm{cm}^{-1}\right)$ and the number of imaginary frequencies (quoted in parentheses) are also indicated at B3LYP. Notice, the first, second, and the third numbers stand for $\mathrm{B}_{4} \mathrm{~S}_{2}, \mathrm{~B}_{4} \mathrm{~S}_{2}^{-}$, and $\mathrm{B}_{4} \mathrm{~S}_{2}^{2-}$, respectively. [Color figure can be viewed in the online issue, which is available at at wileyonlinelibrary.com.]

FIGURE 3. Pictures of the selected occupied molecular orbitals responsible for the BB multiple bonds within the B_{2} cores and the $B-B$ single bonds between B_{2} core and the two $B S$ terminals in linear $D_{\infty h} B_{2}(B O)_{2}^{0 /-/ 2-}$. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
series (3), confirming the existence of formal $B=B, B \equiv B$, and $B \equiv B$ multiple bonds in linear $\mathrm{B}_{2}(\mathrm{BS})_{2}^{0 /-/ 2-}$ series and further supporting the isolobal relationship between $-\mathrm{H},-\mathrm{BO}$, and -BS groups [7].

As mentioned earlier, the di-S-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{4} \mathrm{~S}_{2}$ (4), $C_{2 v} B_{4} S_{2}$ (7), and $C_{2 v} B_{4} S_{2}$ (8) all turned out to be more stable than linear $\mathrm{B}_{2}(\mathrm{BS})_{2}(\mathbf{1})$, with $\mathrm{C}_{2 \mathrm{v}}$ $\mathrm{B}_{4} \mathrm{~S}_{2}$ (7) being the global minimum of the neutral. Other low-lying $\mathrm{B}_{4} \mathrm{~S}_{2}$ neutral isomers (2, 3, 5, 6) with bridging or terminal BS group(s) or a bridging SBS group appeared to lie at least 0.22 eV higher than $D_{\infty h} B_{2}(B S)_{2}(\mathbf{1})$. Bridging S atoms are favored over $B S$ groups in $B_{4} S_{2}$ neutral isomers which prefer to contain a rhombus B_{4} core. This situation is different from $\mathrm{B}_{4} \mathrm{O}_{2}$ which clearly favors the linear triplet $\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BO})_{2}$ containing a B_{2} core terminated with two BO groups [3], in line with the fact that a BS group possesses a lower bond energy ($132 \mathrm{Kcal} / \mathrm{mol}$ at B3LYP) than that ($194 \mathrm{Kcal} / \mathrm{mol}$) of a BO group.

The linear structures of $[\mathrm{S}=\mathrm{B}-\mathrm{BB}-\mathrm{B}=\mathrm{S}]^{0 /-/ 2-}$ series originate from the triplet ground state of the B_{2} core $\left({ }^{3} \Sigma_{g}^{-}\right)$[14] and the σ radical nature of the two terminal BS groups [7] and can be understood in terms of the unique orbital occupations of the linear systems (see Fig. 3). The triplet low-lying linear $[\mathrm{S}=\mathrm{B}-\mathrm{B}=\mathrm{B}-\mathrm{B}=\mathrm{S}]\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)$ possesses the valence electronic configuration of $1 \sigma_{\mathrm{g}}^{2} 1 \sigma_{\mathrm{u}}^{2} 2 \sigma_{\mathrm{g}}^{2} 2 \sigma_{\mathrm{u}}^{2} 3 \sigma_{\mathrm{g}}^{2} 3 \sigma_{\mathrm{u}}^{2} 4 \sigma_{\mathrm{g}}^{2} 1 \pi_{\mathrm{u}}^{4} 1 \pi_{\mathrm{g}}^{4} 2 \pi_{\mathrm{u}}^{2}$. The halffilled degenerate HOMOs $\left(2 \pi_{\mathrm{u}}\right)$ and the fully occupied HOMO-3 $\left(4 \sigma_{\mathrm{g}}\right)$ mainly contribute to the
$B=B$ double bond interaction which has the formal bond order of 2 , while the doubly occupied HOMO-6 $\left(2 \sigma_{\mathrm{u}}\right)$ and HOMO-7 $\left(2 \sigma_{\mathrm{g}}\right)$ form the two $\mathrm{B}-\mathrm{B} \sigma$ single bonds between B_{2} core and the two BS terminal groups. With one or two extra electrons successively added into the degenerate HOMOs $\left(2 \pi_{\mathrm{u}}\right), \quad[\mathrm{S}=\mathrm{B}-\mathrm{B} \equiv \mathrm{B}-\mathrm{B}=\mathrm{S}]^{-}$monoanion $\left({ }^{2} \Pi_{\mathrm{u}}: 1 \sigma_{\mathrm{g}}^{2} 1 \sigma_{\mathrm{u}}^{2} 21 \sigma_{\mathrm{g}}^{2} 2 \sigma_{\mathrm{u}}^{2} 3 \sigma_{\mathrm{g}}^{2} 3 \sigma_{\mathrm{u}}^{2} 4 \sigma_{\mathrm{g}}^{2} 1 \pi_{\mathrm{u}}^{4} 1 \pi_{\mathrm{g}}^{4} 2 \pi_{\mathrm{u}}^{3}\right)$ and $[\mathrm{S}=$ $\mathrm{B}-\mathrm{B} \equiv \mathrm{B}-\mathrm{B}=\mathrm{S}]^{2-}$ dianion $\left({ }^{1} \Sigma_{\mathrm{g}}^{+}: 1 \sigma_{\mathrm{g}}^{2} 1 \sigma_{\mathrm{u}}^{2} 21 \sigma_{\mathrm{g}}^{2} 2 \sigma_{\mathrm{u}}^{2} 3 \sigma_{\mathrm{g}}^{2}\right.$ $3 \sigma_{\mathrm{u}}^{2} 4 \sigma_{\mathrm{g}}^{2} 1 \pi_{\mathrm{u}}^{4} 1 \pi_{\mathrm{g}}^{4} 2 \pi_{\mathrm{u}}^{4}$) possess the formal BB bond orders of 2.5 and 3 within the B_{2} core, respectively. With the bond orders increasing from 2, 2.5 , to 3 , the BB multiple bond lengths within the B_{2} core decrease gradually from $D_{\infty h} B_{2}(B S)_{2}$, $\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}^{-}$, to $\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}^{2-}$ (see discussion above). However, the bond length decreasing of $0.006 \AA$ from $B \equiv B$ in $[S=B-B \equiv B-B=S]^{-}$to $B \equiv B$ in $[S=B-B \equiv B-B=S]^{2-}$ is obviously too small.

$\mathrm{C}_{2 \mathrm{~h}} \mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{~S}_{2}\left({ }^{1} \mathrm{~A}_{\mathrm{g}}\right)$

FIGURE 4. Optimized structures of $D_{2 h} \mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{~S}_{2}$ and $\mathrm{C}_{2 \mathrm{~h}} \mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{~S}_{2}$ at B3LYP with bond lengths indicated in \AA at B3LYP. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

$\left.\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}-{ }^{1} \mathrm{~A}_{\mathrm{l}}\right) \quad \mathrm{T}_{\mathrm{d}} \mathrm{C}(\mathrm{BS})_{4}\left({ }^{1} \mathrm{~A}_{\mathrm{l}}\right)$

$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}(\mathrm{BS})_{4} \operatorname{Li}\left({ }^{1} \mathrm{~A}_{1}\right)$

$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{5} \mathrm{~S}_{4}\left({ }^{2} \mathrm{~B}_{1}\right)$

$\mathrm{C}_{2} \mathrm{~B}(\mathrm{BS})_{4}\left({ }^{2} \mathrm{~A}\right)$

FIGURE 5. Ground-state structures of $T_{d} B(B S)_{4}^{-}, T_{d} C(B S)_{4}, C_{2 v} B(B S)_{4} L i, C_{2 v} B_{5} S_{4}$ at $B 3 L Y P$ with bond lengths indicated in \AA. The local minimum structure of $\mathrm{C}_{2} \mathrm{~B}(\mathrm{BS})_{4}$ is also depicted for comparison. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

	9 $C_{2}\left({ }^{2} \mathrm{~B}\right), T_{d}\left({ }^{1} \mathrm{~A}_{1}\right)$ $+23(0),+44(0)$ $\mathrm{V}_{\text {min }}$
$\Delta \mathrm{E}$	$0.00,0.00$

$$
10 C_{s}\left({ }^{2} \mathrm{~A},{ }^{1} \mathrm{~A}\right)
$$

$$
11 C_{2 v}\left({ }^{2} \mathrm{~B}_{1},{ }^{1} \mathrm{~A}_{1}\right)
$$

$$
12 C_{s}\left({ }^{2} \mathrm{~A},{ }^{1} \mathrm{~A}\right)
$$

$$
+36(0),+44(0)
$$

$$
+34(0),+38(0)
$$

$$
-0.37,+0.91
$$

$$
-1.49,+1.10
$$

$$
-0.21,+1.66
$$

	$\mathbf{1 3} C_{s}\left({ }^{2} \mathrm{~A},{ }^{1} \mathrm{~A},\right)$	$\mathbf{1 4} C_{l}\left({ }^{2} \mathrm{~A}\right), C_{s}\left({ }^{1} \mathrm{~A}\right)$,	$\mathbf{1 5} C_{s}\left({ }^{2} \mathrm{~A},{ }^{1} \mathrm{~A},\right)$	$\mathbf{1 6} C_{s}\left({ }^{2} \mathrm{~A},{ }^{1} \mathrm{~A}\right)$
$\mathrm{V}_{\text {min }}$	$+49(0),+56(0)$	$+39(0),+37(0)$	$+44(0),+48(0)$	$+6(0),+24(0)$
$\Delta \mathrm{E}$	$-1.47,+1.34$	$-0.96,+1.14$	$-0.84,+1.85$	$-0.54,+1.89$

FIGURE 6. Low-lying isomers of $\mathrm{B}_{5} \mathrm{~S}_{4}^{0 /-}$ clusters in the increasing energy order of $\mathrm{B}_{5} \mathrm{~S}_{4}^{-}$, with energies relative to the tetrahedral $9(\Delta E, \mathrm{eV})$ indicated at $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ level. The lowest vibrational frequencies $\left(V_{\mathrm{min}}, \mathrm{cm}^{-1}\right)$ and the number of imaginary frequencies (quoted in parentheses) at B3LYP are also indicated. The first and second numbers stand for $\mathrm{B}_{5} \mathrm{~S}_{4}$ and $\mathrm{B}_{5} \mathrm{~S}_{4}^{-}$, respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Coulomb repulsion in the highly charged $[S=B-B \equiv B-B=S]^{2-}$ dianion partially cancels the $B \equiv B$ covalent triple bond and eventually makes the calculated $\mathrm{B} \equiv \mathrm{B}$ bond length slightly longer $(0.03 \AA)$ than the expected value of $r_{\mathrm{B} \equiv \mathrm{B}}=1.46 \AA$ [15]. This situation can be effectively changed by introducing two Li^{+}countercations into $\mathrm{B}_{2}(\mathrm{BS})_{2}^{2-}$ dianion to form a $\mathrm{B}_{2}(\mathrm{BS})_{2} \mathrm{Li}_{2}$ neutral, as shown in Figure 4. The transition state of $\mathrm{D}_{2 \mathrm{~h}} \mathrm{~B}_{2}(\mathrm{BS})_{2} \mathrm{Li}_{2}$ $\left({ }^{1} \mathrm{~A}_{\mathrm{g}}\right)$ (with an imaginary vibrational frequency of

FIGURE 7. Pictures of the four σ molecular orbitals between B center and its four $B S$ ligands in $T_{d} B(B S)_{4}^{-}$. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I
Calculated natural atomic charges ($q_{\mathrm{x}},|\mathrm{e}|$) and total Wiberg bond indexes $\left(\mathrm{WBI}_{\mathrm{x}}\right)$ of the central B / C atoms, bond orders of $X-B$ single bonds ($W B I_{X-B}$), $B=S$ double bonds ($W B I_{B=s}$), and $B B$ multiple bonds ($W B I_{B B}$), and the symmetrical stretching vibrational frequencies ($v, \mathrm{~cm}^{-1}$) of the high symmetry species at B3LYP level

	State	q_{x}	WBI $_{x}$	WBI $_{x-B}$	WBI $_{B=s}$	WBI $_{B B}$	v
$\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}$	${ }^{3} \sum_{\mathrm{g}}^{-}$	0.06	2.65	1.13	2.38	1.40	$301\left(\sigma_{\mathrm{g}}\right), 1224\left(\sigma_{\mathrm{g}}\right), 1572\left(\sigma_{\mathrm{g}}\right)$
$\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}_{2}(\mathrm{BS})_{2}^{-}$	${ }^{2} \Pi_{\mathrm{u}}$	-0.25	3.26	1.23	2.12	1.78	$307\left(\sigma_{\mathrm{g}}\right), 1188\left(\sigma_{\mathrm{g}}\right), 1606\left(\sigma_{\mathrm{g}}\right)$
$\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}_{2}(\mathrm{BS})_{2}^{2-}$	${ }^{1} \sum_{\mathrm{g}}^{+}$	-0.53	3.88	1.37	1.84	2.06	$305\left(\sigma_{\mathrm{g}}\right), 1098\left(\sigma_{\mathrm{g}}\right), 1626\left(\sigma_{\mathrm{g}}\right)$
$\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$	${ }^{1} \mathrm{~A}_{1}$	-1.69	3.93	0.93	2.27		$298\left(\mathrm{a}_{1}\right), 1293\left(\mathrm{a}_{1}\right)$
$\mathrm{C}_{2 \mathrm{v}} \mathrm{B}(\mathrm{BS})_{4} \mathrm{Li}$	${ }^{1} \mathrm{~A}_{1}$	-1.63	3.94	$0.89,0.98$	$2.11,2.40$		$302\left(\mathrm{a}_{1}\right), 1278\left(\mathrm{a}_{1}\right), 1347\left(\mathrm{a}_{1}\right)$
$\mathrm{C}_{2} \mathrm{~B}(\mathrm{BS})_{4}$	${ }^{2} \mathrm{~A}$	-1.24	3.79	0.94	2.33	$309(\mathrm{a}), 1227(\mathrm{a}), 1300(\mathrm{a})$	
$\mathrm{T}_{\mathrm{d}} \mathrm{C}(\mathrm{BS})_{4}$	${ }^{1} \mathrm{~A}_{1}$	-1.54	3.42	0.82	2.48		$353\left(\mathrm{a}_{1}\right), 1427\left(\mathrm{a}_{1}\right)$

$-52 \mathrm{~cm}^{-1}$) lies 0.09 eV higher than the distorted ground state of $C_{2 h} B_{2}(B S)_{2} L_{2}\left({ }^{1} \mathrm{~A}_{\mathrm{g}}\right)$ and the $\mathrm{B} \equiv \mathrm{B}$ triple bond lengths in these neutral structures are reduced to $1.46-1.47 \AA . \mathrm{B}_{2}(\mathrm{BS})_{2} \mathrm{Li}_{2}$ salt is predicted possible to be synthesized in experiments to prepare the elusive $\mathrm{B} \equiv \mathrm{B}$-containing compounds [3]. It should also be mentioned that, similar to the $\mathrm{B} \equiv \mathrm{O}$ triple bonds discussed in our previous articles [13], the calculated $\mathrm{B}-\mathrm{S}$ bond lengths between 1.61 and $1.69 \AA$ in the $\mathrm{B}_{2}(\mathrm{BO})_{2}^{0 /-/ 2-}$ series within the BS groups (see Fig. 1) turned out to be quite close to the expected $B \equiv S$ triple bond lengths of $1.68 \AA$ [15].

Natural bonding orbital analyses further help to qualitatively understand the bonding situation in $[S=B-B B-B=S]^{0 /-/ 2-}$ linear chains. The Wiberg bond indexes (WBI) of BB multiple interactions within the B_{2} cores increase from $\mathrm{WBI}_{\mathrm{BB}}=1.40$, 1.78, to 2.06 from linear $\mathrm{B}_{2}(\mathrm{BS})_{2}, \mathrm{~B}_{2}(\mathrm{BS})_{2}^{-}$, to $\mathrm{B}_{2}(\mathrm{BS})_{2}^{2-}$, with the corresponding total bond orders of the central B atoms increasing from $\mathrm{WBI}_{\mathrm{B}}=$ $2.65,3.26$, to 3.88 . These values qualitatively support the BB multiple bond length decreasing discussed above. Interestingly, the bond orders of the $B-B$ interactions between the B_{2} core and the two $B S$ groups also increase from $\mathrm{WBI}_{\mathrm{B}-\mathrm{B}}=1.13,1.23$, and 1.37, indicating that these $B-B$ interactions possess certain double bond characteristics (especially in $\mathrm{B}_{2}(\mathrm{BS})_{2}^{2-}$ in which the $\mathrm{B}-\mathrm{B}$ bond length possesses the lowest value of $1.569 \AA$). This agrees with the observation that the HOMO $\left(\pi_{\mathrm{u}}\right)$ of the systems has been partially delocalized along the B_{4} chains at the centers of the $[S=B-B B-B=S]^{0 /-/ 2-}$ structures (see Fig. 3).

3.2. $\mathbf{B (B S})_{4}^{-}{ }^{-}$AND $\mathbf{B}_{\mathbf{3}} \mathbf{S}_{\mathbf{4}}$

Similar to the geometries of $\mathrm{T}_{\mathrm{d}} \mathrm{BH}_{4}^{-}$and T_{d} $\mathrm{B}(\mathrm{BO})_{4}^{-}[4], \mathrm{B}_{5} \mathrm{~S}_{4}^{-}$anion proved to have a perfect
tetrahedral ground state of $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS}){ }_{4}^{-}\left(9,{ }^{1} \mathrm{~A}_{1}\right)$, in which the four BS groups were directly connected to the negatively charged B center, with the $B-B$ bond lengths of 1.648 A and $\mathrm{B}=\mathrm{S}$ bond lengths of $1.632 \AA$ (see Figs. 5 and 6). Replacing the negative B center in 9 with a C atom produces the T_{d} $\mathrm{C}(\mathrm{BS})_{4}$ neutral $\left({ }^{1} \mathrm{~A}_{1}\right)$ which is a BS substitute of CH_{4} with the bond lengths of $r_{\mathrm{C}-\mathrm{B}}=1.545 \AA$ and $r_{\mathrm{B}=\mathrm{S}}=1.603 \AA$. Other 2 D and $3 \mathrm{D} \mathrm{B}_{5} \mathrm{~S}_{4}^{-}$isomers (10-16) analogous to the low-lying isomers of $\mathrm{B}_{5} \mathrm{O}_{4}^{-}$[4] lie at least 0.91 eV higher than T_{d} $\mathrm{B}(\mathrm{BO})_{4}^{-}$(9), suggesting that a B^{-}tetrahedral center is strongly favored in a $\mathrm{B}(\mathrm{BO})_{4}^{-}$anion. The results obtained here on $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$and $\mathrm{T}_{\mathrm{d}} \quad \mathrm{C}(\mathrm{BS})_{4}$ strongly support the $\mathrm{B}^{-} / \mathrm{C}$ analog noticed in our previous work [4]. A perfect squared $D_{4 h} B_{5} S_{4}^{-}$ (with a planar tetracoordinate B at the center) similar to the ground state of $\mathrm{D}_{4 \mathrm{~h}} \mathrm{Al}_{5} \mathrm{O}_{4}^{-}$[16]

TABLE II
Calculated ADEs (eV) and VDEs (eV) of $\mathrm{D}_{\infty \mathrm{h}} \mathrm{B}_{2}(\mathrm{BS})_{2}^{-}$ and $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$at B3LYP and CCSD(T) levels and their vertical one-electron detachment energies at OVGF (full) with pole-strengths greater than 0.80

	Final state	B3LYP	$\begin{gathered} \text { CCSD(T)/ } \\ \text { B3LYP } \end{gathered}$	OVGF(full)/ B3LYP
$\mathrm{D}_{\infty} \mathrm{B}_{2}(\mathrm{BS})_{2}^{-}$				
ADE	${ }^{3} \sum_{9}^{-}$	3.05	3.01	
VDE (X)	${ }^{3} \sum_{9}$	3.11	3.09	3.04
A	${ }^{1} \Delta_{\mathrm{g}}$			3.28
B	${ }^{1} \sum_{g}$			3.77
C	${ }^{3} \sum_{g}^{-}$			6.19
$\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$				
ADE	${ }^{2} \mathrm{~B}$	5.32	5.61	
VDE(X)	${ }^{2} \mathrm{~T}_{2}$	5.87	6.63	6.33
A	${ }^{2} \mathrm{~T}_{1}$			6.70
B	${ }^{2} \mathrm{E}$			7.11
C	${ }^{2} \mathrm{~T}_{2}$			8.17

proved to lie very higher in energy ($>15 \mathrm{eV}$). Introducing a bridging Li^{+}cation to $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BO})_{4}^{-}$ produces the Li^{+}-bridged $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}(\mathrm{BO})_{4} \mathrm{Li} \quad\left({ }^{1} \mathrm{~A}_{1}\right)$ which is the global minimum of the neutral (see Fig. 5). Tetrahedral B center is well maintained in $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}(\mathrm{BO})_{4} \mathrm{Li}$ ion-pair, suggesting the possibility of synthesizing $\mathrm{B}(\mathrm{BO})_{4} \mathrm{Li}$ salt containing tetrahedral B^{-}centers in experiments.

Given the BS/H isolobal relationship [4], the high stability of tetrahedral $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$can be understood in its molecular orbitals shown in Figure 7 which represent the four $\mathrm{B}-\mathrm{B} \sigma$ bonds between the B center and its BS ligands. In fact, the electronic configuration of $\mathrm{B} 2 s^{0.95} 2 p^{3.68}$ in $\mathrm{T}_{\mathrm{d}} \quad \mathrm{B}(\mathrm{BS})_{4}^{-}$anion qualitatively agrees with $\mathrm{C} 2 s^{1.17} 2 p^{4.28}$ in $\mathrm{T}_{\mathrm{d}} \mathrm{C}(\mathrm{BS})_{4}$ neutral, indicating that the B center in $T_{d} B(B S)_{4}^{-}$with the negative atomic charge of $q_{\mathrm{B}}=-1.69$ |e| behaves similar to the C center in $T_{d} C(B S)_{4}$ which has the net charge of $q_{C}=-1.54 \quad|e|$. The calculated $B-B$ bond order of $\mathrm{WBI}_{\mathrm{B}-\mathrm{B}}=0.93$ and the total bond order of the central B atom $\mathrm{WBI}_{\mathrm{B}}=3.93$ well support the $B \operatorname{sp}^{3}$ hybridization pattern in $\mathrm{T}_{\mathrm{d}} 9$.

Detaching one electron from the perfect tetrahedral $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}(15)$ involves a John-Teller process to produce the severely distorted local minimum of $C_{2} B(B S)_{4}$ (see Fig. 5) which lies 1.49 eV higher than the ground state of the neutral system—a planar kite-like $\mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{5} \mathrm{~S}_{4}\left(11,{ }^{2} \mathrm{~B}_{1}\right) . \mathrm{C}_{2 \mathrm{v}} \mathrm{B}_{5} \mathrm{~S}_{4}$ contains a di-S-bridged B_{3} triangle [14] bonded to two BS groups. All the other low-lying isomers of $\mathrm{B}_{5} \mathrm{~S}_{4}$ shown in Figure 6 also proved to be more stable than $C_{2} B_{5} S_{4}$, indicating that a tetrahedral B center directly bonded to four $B S$ groups in $B_{5} S_{4}$ neutral is extremely unstable. $\mathrm{C}_{2 \mathrm{v}} \quad \mathrm{B}_{5} \mathrm{~S}_{4} \quad$ (11) appeared to be also much different from the ground state of the Y -shaped $\mathrm{C}_{\mathrm{s}} \mathrm{B}_{5} \mathrm{O}_{4}$ in which BO groups are basically maintained [4], further indicating that bridging S atoms are more energetically favored in $\mathrm{B}_{5} \mathrm{~S}_{4}$ neutral than bridging O in $\mathrm{B}_{5} \mathrm{O}_{4}$ and BS groups are obviously less robust in boron sulfide clusters than BO units in boron oxide counterparts.

3.3. ONE-ELECTRON DETACHMENT ENERGIES AND SYMMETRICAL STRETCHING VIBRATIONAL FREQUENCIES

As shown in Table II, B3LYP, OVGF(full), and $\operatorname{CCSD}(\mathrm{T})$ methods produced consistent one-electron detachment energies for $\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}^{-}$and T_{d} $\mathrm{B}(\mathrm{BS})_{4}^{-}$anions possible to be characterized in PES
experiments. $D_{\infty h} B_{2}(B S)_{2}^{-}$is predicted to have one strong X band $\left({ }^{3} \sum_{g}^{-}\right)$at 3.09 eV , two closely located weak bands with A $\left({ }^{1} \Delta_{\mathrm{g}}\right)$ at 3.28 eV and B $\left({ }^{1} \sum_{\mathrm{g}}^{-}\right)$at 3.77 eV , and one strong C band $\left({ }^{1} \sum_{\mathrm{g}}^{-}\right)$at 6.19 eV . As the structural relaxation from $\mathrm{D}_{\infty h}$ $B_{2}(B S)_{2}^{-}$to $D_{\infty h} B_{2}(B S)_{2}$ is very small (see Fig. 1), the X band of $B_{2}(B S)_{2}^{-}$is expected to be a sharp peak with close ADE (3.01 eV) and VDE (3.09 eV) values, similar to the situation of $D_{\infty h} B_{2}(B O)_{2}^{-3}$. Besides, the symmetrical stretching vibrations of $\mathrm{B}-\mathrm{B}$ bond at $301 \mathrm{~cm}^{-1}\left(\sigma_{\mathrm{g}}\right), \mathrm{B}=\mathrm{S}$ bond at 1224 $\mathrm{cm}^{-1}\left(\sigma_{\mathrm{g}}\right)$, and $\mathrm{B}=\mathrm{B}$ bond at $1572 \mathrm{~cm}^{-1}\left(\sigma_{\mathrm{g}}\right)$ in neutral $\mathrm{D}_{\infty h} \mathrm{~B}_{2}(\mathrm{BS})_{2}$ (see Table I) are expected to be resolved as vibrational progressions in high resolution PES. It is also possible to observe the symmetrical stretching vibrations of the $D_{\infty h}$ $\mathrm{B}_{2}(\mathrm{BS})_{2}^{-}$anion (Table I) in the hot bands of its PES.

The PES spectrum of $T_{d} B(B S)_{4}^{-}$is predicted to contain broad bands for the reason that significant structural changes are involved from $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$to $C_{2} B(B S)_{4}$ (see Fig. 5) when the extra electron is detached. This prediction agrees with the huge energy difference ($\approx 1.0 \mathrm{eV}$) between the calculated $\operatorname{ADE}(5.61 \mathrm{eV})$ and VDE (6.63 eV) at $\operatorname{CCSD}(\mathrm{T})$ level. The symmetrical stretching vibrations of $B-B$ at $309 \mathrm{~cm}^{-1}$ and $B=S$ at $1227 \mathrm{~cm}^{-1}$ and $1300 \mathrm{~cm}^{-1}$ predicted for $C_{2} B(B S)_{4}$ may be resolved in high resolution PES of $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$. It is also possible to observe the $\mathrm{B}-\mathrm{B}$ stretching at 298 cm^{-1} and $\mathrm{B}=\mathrm{S}$ stretching at $1293 \mathrm{~cm}^{-1}$ obtained for $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$in the hot bands of its PES. Besides, it should be pointed out that the first VDE $\left({ }^{2} \mathrm{~T}_{2}\right)$ of $\mathrm{T}_{\mathrm{d}} \mathrm{B}(\mathrm{BS})_{4}^{-}$located between 6.3 and 6.6 eV appears to be considerably lower than the corresponding value of $7.8-8.1 \mathrm{eV}$ predicted for T_{d} $\mathrm{B}(\mathrm{BO})_{4}^{-}$[7].

4. Summary

We have presented an ab initio investigation on the geometrical and electronic properties of $\mathrm{B}_{4} \mathrm{~S}_{2}^{0 /-/ 2-}\left(\mathrm{B}_{2}(\mathrm{BS})_{2}^{0 /-/ 2-}\right)$ and $\mathrm{B}_{5} \mathrm{~S}_{4}^{0 /-}\left(\mathrm{B}(\mathrm{BS})_{4}^{0 /-}\right)$ at different charged states in this work. Both the ground states of linear $D_{\infty h} B_{2}(B S)_{2}^{-}$and $D_{\infty h}$ $B_{2}(B S)_{2}^{2-}$ prove to contain a multiply bonded $B B$ core terminated with two $B S$ groups, while T_{d} $\mathrm{B}(\mathrm{BS})_{4}^{-}$is predicted to possess a perfect tetrahedral B^{-}center directly connected to four BS groups. Their neutrals, on the other hand, possess the planar fan-shaped $\mathrm{C}_{2 \mathrm{v}} \quad \mathrm{B}_{4} \mathrm{~S}_{2}$ and planar kite-
like $C_{2 v} \quad B_{5} S_{4}$ geometries with two bridging S atoms, respectively. Inorganic neutral salts of $\mathrm{B}_{2}(\mathrm{BS})_{2} \mathrm{Li}_{2}$ with $\mathrm{B} \equiv \mathrm{B}$ triple bonds and $\mathrm{B}(\mathrm{BS})_{4} \mathrm{Li}$ with tetrahedral B^{-}centers are predicted possible to be synthesized in experiments.

References

1. Zhai, H. J.; Li, S. D.; Wang, L. S. J Am Chem Soc 2007, 129, 9254.
2. Zhai, H. J.; Wang, L. M.; Li, S. D.; Wang, L. S. J Phys Chem 2007, 111, 1030.
3. Li, S. D.; Zhai, H. J.; Wang, L. M. J Am Chem Soc 2008, 130, 2573.
4. Yao, W. Z.; Guo, J. C.; Lu, H. G.; Li, S. D. J Phys Chem A 2009, 113, 2561.
5. Nguyen, M. T.; Matus, M. H.; Ngan, V. T.; Grant, D. J.; Dixon, D. A. J Phys Chem A 2009, 113, 4895.
6. Drummond, M. L.; Meunier, V.; Sumpter, B. G. J Phys Chem A 2007, 111, 6539.
7. Guo, Q. L.; Guo, J. C.; Li, S. D. Chin J Struct Chem 2008, 27, 651.
8. Sommer, A.; Walsh, P. N.; White, D. J Chem Phys 1960, 33, 296.
9. (a) Becke, A. D. J Chem Phys 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
10. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J Chem Phys 1992, 96, 6796.
11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;

Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Kiene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A. 1.; Gaussian, Inc.: Pittsburgh, PA, 2003.
12. (a) Cizek, J. Adv Chem Phys 1969, 14, 35; (b) Scuseria, G. E.; Schaefer, H. F. J Chem Phys 1989, 90, 3700.
13. (a) Niessen, W. V.; Schirmer, J.; Cederbaum, L. S. Comput Phys Rep 1984, 1, 57; (b) Ortiz, J. V.; Zakrzewski, V. G.; Dolgounircheva, O. In Conceptual Perspectives in Quantum Chemistry; Calais, J. L.; Kryachko, E., Eds.; Kluwer Academic: Boston, MA, 1997; p 465; (c) Ortiz, J. V. Adv Quantum Chem 1999, 35, 33.
14. Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H. J.; Wang, L. S. Coord Chem Rev 2006, 250, 2811.
15. Pyykko, P.; Riedel, S.; Patzschke, M. Chem Eur J 2005, 11, 3511.
16. Das, U.; Raghavachari, K.; Jarrold, C. C. J Chem Phys 2005, 122, 014313.

[^0]: Correspondence to: S.-D. Li; e-mail: lisidian@yahoo.com
 Contract grant sponsor: Natural Science Foundation of China.

 Contract grant number: 20873117.
 Contract grant sponsor: Shanxi Natural Science Foundation.
 Contract grant number: 2006011024.

