Simplest Neutral Singlet $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Al}, \mathrm{Ga}$, In , and Tl) Global Minima with Double Planar Tetracoordinate Carbons: Equivalence of \mathbf{C}_{2} Moieties in $\mathbf{C}_{2} \mathbf{E}_{4}$ to Carbon Centers in $\mathbf{C A l}_{4}{ }^{\mathbf{2 -}}$ and $\mathrm{CAl}_{5}{ }^{+}$

Yan-Bo Wu, ${ }^{*},{ }^{\dagger}, \ddagger$ Hai-Gang Lu, ${ }^{\dagger}$ Si-Dian Li, ${ }^{\dagger}$ and Zhi-Xiang Wang ${ }^{*}{ }^{\boldsymbol{*}}$
Institute of Molecular Science, the Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiuan, 030006, Shanxi, People's Republic of China and College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China

Received: November 11, 2008; Revised Manuscript Received: January 13, 2009

Abstract

Ab initio and DFT calculations have been carried out to search for the simplest neutral singlet species with double planar tetracoordinate carbons (dptCs) [the "simplest" means the species containing the least number (six) and types (two) of atoms]. Under the restrictions to the possible models (M1-M4) with dptCs and to the singlet electronic states, the B3LYP/6-31+G* scanning on the candidates, $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=$ the second- and thirdrow main group elements), only led to two minima ($D_{2 h} \mathrm{C}_{2} \mathrm{Al}_{4}$ and $C_{2 h} \mathrm{C}_{2} \mathrm{Be}_{4}$) with stable DFT wave functions. The extensions to the heavier elements after the fourth row in the IIA and IIIA groups revealed that the $D_{2 h}$ $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Ga}$, In , and Tl$)$ are also minima with dptCs but $\mathrm{C}_{2} \mathrm{Ca}_{4}\left(C_{2 h}\right)$ is a first-order saddle point. Extensive explorations at the DFT level on their potential energy surfaces (PESs) further confirmed that the $D_{2 h} \mathrm{C}_{2} \mathrm{E}_{4}$ $(\mathrm{E}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and Tl$)$ are the global minima, but the $C_{2 h} \mathrm{C}_{2} \mathrm{Be}_{4}$ is a local minimum. The optimizations at the MP2 level distorted the $D_{2 h} \mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Ga}$, In , and Tl$)$ slightly and the distortion energies are less than $0.02 \mathrm{kcal} / \mathrm{mol}$. The $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and Tl$)$ with dptCs are $18.0,18.3,13.4$, and $12.2 \mathrm{kcal} / \mathrm{mol}$ energetically more favorable than their nearest isomers, respectively, at the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$ level with aug-cc-pVTZ for C and Al and aug-cc-pVTZ-PP for Ga , In , and Tl basis set. The substantial energy differences suggest their promise to be experimentally realized. The strong peak on the $\mathrm{C}_{2} \mathrm{Al}_{4}{ }^{-}$component in the time-of-flight mass spectrum from laser vaporization of a mixed graphite/aluminum may relate to the $D_{2 h} \mathrm{C}_{2} \mathrm{Al}_{4}$ global minimum. The analyses of the electronic structures of $\mathrm{C}_{2} \mathrm{Al}_{4}\left(D_{2 h}\right), \mathrm{CAl}_{4}{ }^{2-}\left(D_{4 h}\right)$ and $\mathrm{CAl}_{5}{ }^{+}\left(D_{5 h}\right)$ indicates that the C_{2} moiety in $\mathrm{C}_{2} \mathrm{Al}_{4}$ is the equivalence of carbon centers in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$and unveils the reasons for their stability. The electronic structures of $\mathrm{C}_{2} \mathrm{Al}_{4}$ and ethene are compared. On the one hand, an Al atom functions like an H atom because the eight more valence electrons of $\mathrm{C}_{2} \mathrm{Al}_{4}$ than $\mathrm{C}_{2} \mathrm{H}_{4}$ occupy four nonbonding orbitals and are not effectively utilized for bonding. On the other hand, an Al atom is different from an H atom because an Al atom has p electrons available for peripheral bonding around the C_{2} moieties in $\mathrm{C}_{2} \mathrm{Al}_{4}$, which further rationalize the origins for $\mathrm{C}_{2} \mathrm{E}_{4}$ to achieve double ptCs.

1. Introduction

Linear dicoordination (e.g., ethyne), planar trigonal tricoordination (e.g., ethene) and tetrahedral tetracoordination (e.g., methane) are the predominant bonding patterns of carbon. However, a curious exception, planar tetracoordinate carbon (ptC), has fascinated chemists since the 1970s, when Hoffmann, Alder, and Wilcox ${ }^{1}$ suggested ways to reduce the unfavorable energies of ptC disposition after Monkhorst proposed the planar configuration for the interconversion of enantiomers with asymmetric carbon in 1968. ${ }^{2}$ Since the first computational prediction of a ptC minimum, 1,1-dilithiocyclopropane, by the Schleyer-Pople group, ${ }^{3}$ various molecules with ptCs have been characterized computationally or experimentally. ${ }^{4-9}$ Because the coordination number for the conventional planar carbon bonding (e.g., the carbons in ethene and benzene) is three, one can consider planar carbon having a coordination number higher than three, as planar hypercoordinate carbon (phC). Molecules with planar penta- and hexa-coordinate carbon have been computationally predicted to be viable by Wang and Schleyer ${ }^{10}$ and Exner and Schleyer, ${ }^{11}$ respectively. Recently, the planar

[^0]bonding patterns have been further extended to planar hypercoordinate heteroatoms and transition metals. ${ }^{12-18}$

In the phC chemistry, chemists, on one hand, strive to design species containing more and more phCs. For example, the Frenking-Schleyer group ${ }^{19}$ recently reported boron rings with multiple phCs. Minyaev et al. ${ }^{20,21}$ designed species with several ptCs based on $\mathrm{C}_{3} \mathrm{~B}_{2} \mathrm{H}_{n}(n=2,4$, and 6$)$ ptC units. Zhang and $\mathrm{Cao}^{22,23}$ constructed zigzag $\mathrm{C}-\mathrm{B}$ nanotube with quasi-ptCs. Using the $\mathrm{CM}_{4} \mathrm{H}_{4}(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt})$ as basic building blocks, Wu et al. ${ }^{24}$ designed compounds of various shapes with multiple ptCs or quasi-ptCs. On the other hand, they make efforts to achieve phC in the simplest global minima because being the global minimum can facilitate experimental generations and identifications. For example, the $D_{4 h} \mathrm{CAl}_{4}{ }^{2-}$ has been identified to be the simplest penta-atomic global minimum, this species and its analogs, $\mathrm{CAl}_{4}^{-},{ }^{25} \mathrm{CAl}_{3} \mathrm{Si}^{-}{ }^{26}{ }^{2} \mathrm{CAl}_{3} \mathrm{Ge}^{-},{ }^{26} \mathrm{CAl}_{4}{ }^{2-}$, and $\mathrm{NaCAl}_{4}{ }^{-},{ }^{27}$ have been experimentally detected in 1999 and 2000. Interestingly, their isoelectronic ptC species, cis- and trans$\mathrm{CAl}_{2} \mathrm{Si}_{2}$, were predicted by Schleyer and Boldyrev in 1991. However, the effort to detect the phC species $\mathrm{CB}_{7}{ }^{-}$and $\mathrm{CB}_{6}{ }^{2-}$ (not global minima) ${ }^{10,11}$ led to the more energetically favorable species, in which the carbon atoms prefer locating on the edges or vertexes. ${ }^{28,29}$ More examples of simplest global minima with phC, such as $\mathrm{CB}_{4},{ }^{30,31} \mathrm{CAl}_{5}^{+},{ }^{32} \mathrm{CCu}_{4}{ }^{2+}$, and its isoelectronic analogs, ${ }^{33}$ have recently been reported. Moreover, the simplest species may be used as the basic building blocks to construct new molecules or materials with multiple phCs. The potential

SCHEME 1: Simplest Models Possibly Containing dptCs

M1	M2	M3	M4

of using small ptC building blocks (e.g., $\mathrm{CB}_{6}{ }^{2-},{ }^{34-39} \mathrm{C}_{5}{ }^{2-},{ }^{40-45}$ $\mathrm{CAl}_{3} \mathrm{Si}^{46}$ and $\mathrm{CAl}_{4}{ }^{2-},{ }^{47}$) to design novel materials has been explored theoretically. In this work, we attempted to find the simplest species with double planar tetracoordinate carbons (dptCs), and showed that the obtained $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and Tl) are not only the simplest species with dptCs, but also the global minima. Note that the "simplest" means the dptC species containing the least number (six) and types (two) of atoms.

2. Computational Methods

Scheme 1sketches the simplest binary models (M1-M4) which possibly contain dptCs. Under the restrictions to these models and to singlet electronic states, we scanned the secondand third-row main group elements at the B3LYP/6-31+G* level. The species, $\mathrm{C}_{2} \mathrm{Al}_{4}$ (M1) and $\mathrm{C}_{2} \mathrm{Be}_{4}$ (M2), are the only survivors to meet two criteria: minima with dptCs and the DFT wave functions being stable. Other species, such as $\mathrm{C}_{2} \mathrm{Li}_{4}$ (M1 and M2) and $\mathrm{C}_{2} \mathrm{Na}_{4}$ (M2 and M4), are minima with dptCs but their wave functions are instable. $\mathrm{C}_{2} \mathrm{Mg}_{4}$ has no dptCs minimum under the restrictions. We then extended the scanning to the heavier elements in the group of IIA and IIIA at the B3LYP level with basis sets $6-31+\mathrm{G}^{*}$ for C, Ca, and Ga and aug-cc-pVDZ-PP ${ }^{48-50}$ for In and Tl . At this level, $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Ga}$, In, and Tl) are also minima but $\mathrm{C}_{2} \mathrm{Ca}_{4}$ is a first-order saddle point. We therefore discarded $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Mg}$ and Ca$)$ in the following.

The located species with dptCs were then verified to be global minima using the following procedure. For each $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Be}$, $\mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and Tl), 3000 random structures were generated by a program called $G X Y Z,{ }^{51}$ which is principally the same as the "kick" method proposed by Saunders et al. ${ }^{52,53}$ Both of the methods generate a large pool of random structures for geometric optimizations. About $80 \sim 90 \%$ of these random structures were filtered out because they are structurally unreasonable. The remaining 376, 278, 202, 171, and 185 structures for $\mathrm{E}=\mathrm{Be}, \mathrm{Al}, \mathrm{Ga}$, In , and Tl , respectively, were then subjected to optimizations at B3LYP level with the basis
set mentioned above. Ignoring the slight differences due to releasing the symmetry constraint, there were $6,8,11,10$, and 12 structures for $\mathrm{E}=\mathrm{Be}, \mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and Tl , respectively, identified to be the same as the dptCs minima optimized on the basis of the models. This implies the good samplings on the potential energy surfaces (PESs). To further examine the sampling convergence, taking $\mathrm{C}_{2} \mathrm{Al}_{4}$ as an example, another independent exploration with 4000 initial random structures was carried out. Optimizations on the 717 initially filtered input structures gave 40 structures having $D_{2 h}$ symmetry with dptCs. In a study on the $\mathrm{C}_{n} \mathrm{Al}_{m}(n=2-3, m=2-8)$ clusters, Naumkin ${ }^{54}$ also reported the $D_{2 h} \mathrm{C}_{2} \mathrm{Al}_{4}$ species, but it is unclear if it is the global minimum. The dptCs minima, together with the lowest three for $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and Tl$)$ or five for $\mathrm{C}_{2} \mathrm{Be}_{4}$ isomers obtained in the above step, were then refined and confirmed to be minima by frequency analysis calculations at the B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP ${ }^{48-50}$ for Ga , In, and Tl) level. Concerning the caveats about the DFT reliability recently raised by several authors, ${ }^{55-59}$ the B3LYP geometries (including the dptCs minima) were reoptimized at the MP2/ aug-cc-pVTZ (aug-cc-pVTZ-PP for Ga, In, and Tl) level, which resulted in slightly distorted structures for $\mathrm{E}=\mathrm{Ga}$, In, Tl (see below). The energetic results were finally improved at the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVTZ (aug-cc-pVTZ-PP for Ga, In, and Tl) level using the MP2 structures. The results reported in the following are all calculated with the basis set aug-cc-pVTZ (aug-cc-pVTZ-PP for Ga , In and Tl). The basis set will not be mentioned hereafter, unless otherwise specified. All ab initio and DFT calculations were performed using the Gaussian 03 program of package. ${ }^{60}$ The electronic structures were analyzed by NBO $5.0{ }^{61,62}$ at the B3LYP level.

3. Results and Discussion

Being the structures of $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Al}(\mathbf{1 a}), \mathrm{Ga}(\mathbf{2 a}), \mathrm{In}(\mathbf{3 a})$, and $\mathrm{Tl}(\mathbf{4 a})$), optimized at the B3LYP and MP2 levels, are shown in Figure 1, and their Cartesian coordinates at the two levels are given in the Supporting Information I (SI1). At the B3LYP level, the $D_{2 h} \mathbf{1 a}-\mathbf{4 a}$ are all minima, but at the MP2 level, only $D_{2 h} \mathbf{1 a}$ is a minimum and $D_{2 h} \mathbf{2 a}, \mathbf{3 a}$, and $\mathbf{4 a}$ are first-order saddle points with very small imaginary frequencies (9i, 16i, and $10 \mathrm{i} \mathrm{cm}^{-1}$, respectively). Following the vibrational modes corresponding to the imaginary frequencies, the $D_{2 h} \mathbf{2 a}$, subjecting to geometrical optimization, degenerated to a planar $C_{2 v}$ structure with dptCs, but the $D_{2 h} \mathbf{3 a}$ and $\mathbf{4 a}$ to the bending $C_{2 v}$ structures without perfect ptC (see Figure 1). However, the

Figure 1. B3LYP and MP2 optimized geometries of $\mathbf{1 a}-\mathbf{4 a}, \mathrm{CAl}_{4}{ }^{2-}$, and $\mathrm{CAl}_{5}{ }^{+}$, together with the numbers of imaginary frequencies (NIMAG) and the lowest vibrational frequencies $\left(V_{\min }\right)$ in cm^{-1}. Bond lengths and bond angles are given in angstroms and degrees, respectively.

Figure 2. B3LYP and MP2 optimized geometries of the three singlet isomers nearest to $\mathbf{1 a} \mathbf{- 4 a}$, together with the relative energies (ΔE in $\mathrm{kcal} / \mathrm{mol}$) at the B3LYP, MP2, and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$, respectively. Bond lengths are given in \AA. Values in brackets are MP2 results.
energy differences between $C_{2 v}$ and $D_{2 h}$ structures of 2a, 3a, and $4 \mathbf{a}$ are very small (less than $0.02 \mathrm{kcal} / \mathrm{mol}$). The negligible differences are much less than the zero point energy corrections and therefore the $C_{2 v} \mathbf{3 a}$ and $\mathbf{4 a}$ can be considered to be fluxionary ptC species and detected as vibrationally averaged planar $D_{2 h}$ structures experimentally. ${ }^{25,63}$

The global minimum is very important for feasibly experimental access, in particular for the laser-ablation-based experiments because the method tends to anneal species into the global minimum. ${ }^{63}$ For example, the experimentally detected $D_{4 h} \mathrm{CAl}_{4}{ }^{-}$ and $\mathrm{CAl}_{4}{ }^{2-}$ have been verified to be the global minima computationally. ${ }^{25,27}$ However, as mentioned before, the effort to detect the phC species $\mathrm{CB}_{7}{ }^{-}$and $\mathrm{CB}_{6}{ }^{2-}$ (not global minima) ${ }^{10,11}$ led to the energetically more favorable species, in which the carbon atoms prefer locating on the edges or vertexes. ${ }^{28,29}$ The $D_{5 h} \mathrm{CAl}_{5}{ }^{+32}$ is also predicted to be the global minimum. Using the procedure described above, we explored the PESs of $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}$, and Tl$)$ extensively. Figure 2 gives the first three lowest isomers of 1a, 2a, 3a, and $\mathbf{4 a}$. Although with respect to the symmetry planes containing dptCs, the $D_{2 h}$ structures are fluxional, they are rigid with respect to other freedoms of motions. At the B3LYP level, 1a-4a are $16.9,15.0,13.1$, and $10.7 \mathrm{kcal} / \mathrm{mol}$ energetically more favorable
than their nearest isomers $(\mathbf{1 b} \mathbf{- 4 b})$, respectively. The B3LYP relative energies are reasonably in agreement with the MP2 (17.1, 13.2, 14.7, and $13.8 \mathrm{kcal} / \mathrm{mol}$, respectively) and $\operatorname{CCSD}(\mathrm{T}) / /$ MP2 (18.0, 18.3, 13.4, and $12.2 \mathrm{kcal} / \mathrm{mol}$, respectively) values.

We further considered the triplet states of these species and explored their PESs using the same approaches as for the singlet states. Their structural and energetic results are given in SI1, SI4 and SI5. At our highest $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$ level, the lowest triplet states of $\mathrm{C}_{2} \mathrm{E}_{4}(\mathrm{E}=\mathrm{Al}, \mathrm{Ga}$, and In$)$ are 1.6, 2.0, and 0.4 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than their fourth lowest singlet states, $\mathbf{1 d}, \mathbf{2 d}$, and 3d, respectively. The lowest $\mathrm{C}_{2} \mathrm{Tl}_{4}$ triplet state lies between $\mathbf{4 c}$ and $\mathbf{4 d}$ and is $0.1 \mathrm{kcal} / \mathrm{mol}$ higher in energy than 4c. Therefore, we may safely conclude that the singlet species, 1a-4a shown in Figure 1, are indeed the global minima under the considerations of both singlet and triplet states.

We noted that a time-of-flight mass spectrum from laser vaporization of a mixed graphite/aluminum target, reported by Boldyrev-Wang groups, ${ }^{63}$ showed a strong peak on the $\mathrm{C}_{2} \mathrm{Al}_{4}{ }^{-}$ component, which may relate to the fact that $\mathrm{C}_{2} \mathrm{Al}_{4}$ is the global minimum. We propose further verifications of the species and others reported.

The B3LYP and MP2 optimizations gave the same structures for these isomers except for $\mathbf{1 b}$ (see Figure 2). The first three isomers in the $\mathrm{C}_{2} \mathrm{Ga}_{4}(\mathbf{2 b} \mathbf{- 2 d})$ and $\mathrm{C}_{2} \mathrm{In}_{4}(\mathbf{3 b}-\mathbf{3 d})$ series have similar structures and the same energy order, but $\mathbf{1 d}$ and $\mathbf{4 c}$ have no counterparts in the $\mathrm{C}_{2} \mathrm{Ga}_{4}$ and $\mathrm{C}_{2} \mathrm{In}_{4}$ series. It is remarkable because they are ranked entirely based on the random searches, which implies some common features in their chemical bonding. For all of the four series, the relative energy orders of the isomers, given by MP2 and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$, are identical in spite of their different magnitudes. For $\mathrm{C}_{2} \mathrm{Al}_{4}$ series, the B3LYP order is consistent with those given by MP2 and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$, but the two levels give different orders for $\mathrm{C}_{2} \mathrm{Ga}_{4}, \mathrm{C}_{2} \mathrm{In}_{4}$, and $\mathrm{C}_{2} \mathrm{Tl}_{4}$ series and reverse the orders of \mathbf{c} and d isomers. Nevertheless, the three levels unanimously predicted \mathbf{a} and \mathbf{b} isomers to be the first two lowest isomers.

The $C_{2 h} \mathrm{C}_{2} \mathrm{Be}_{4}$ (M2) with dptCs is a local minimum. The exploration on its PES, at the B3LYP/6-31+G* level, indicates that it is the fifth lowest. The refinement calculations at the B3LYP/aug-cc-pVTZ also rank it the fifth lowest. But the calculations at both MP2 and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$ levels rank it the sixth lowest. At the three levels, the dptC-contained $\mathrm{C}_{2} \mathrm{Be}_{4}$ is $8.8,11.9$, and $9.7 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the global minima (5a), respectively (see Figure 3, their Cartesian coordinates are given in SI2). It should be mentioned that PES exploration (B3LYP/6-31+G*) revealed that the global minimum is a planar irregular hexagon. In a recent B3PW91/ $6-31+\mathrm{G}^{*}$ study on the $\mathrm{Be}_{n} \mathrm{C}_{m}(n=1 \sim 10 ; m=1 \sim 11-n$, respectively) clusters, Mainardi and co-workers ${ }^{64}$ also reported such a hexagonal structure. However, the B3LYP/aug-cc-pVTZ optimization indicates that it is the regular hexagonal global minimum with $C_{2 v}$ symmetry. The MP2 optimizations with aug-cc-pVTZ basis set also led to the $C_{2 v}$ structure but rank it the third lowest. However, the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$ single-point calculations again indicate the $C_{2 v}$ structure to be the global minimum.

Among the twelve vibrational modes of $\mathbf{1 a} \mathbf{- 4 a}$, only the asymmetric bridging- $\mathrm{E}\left(\mathrm{E}_{\mathrm{BR}}\right)-\mathrm{C}$ and terminal- $\mathrm{E}\left(\mathrm{E}_{\mathrm{TE}}\right)-\mathrm{C}$ stretching modes show strong activities and the others are entirely inactive or have very small infrared intensities. To aid the experimental identification, Table 1 lists the frequencies and infrared intensities of the two strongest modes of $\mathbf{1 a}-\mathbf{4 a}$, along with the strongest modes of $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$. Although the irreducible representations of $\mathrm{C}-\mathrm{E}$ stretching vibrational modes at B3LYP and MP2 level for $\mathrm{C}_{2} \mathrm{Ga}_{4}, \mathrm{C}_{2} \mathrm{In}_{4}$, and $\mathrm{C}_{2} \mathrm{Tl}_{4}$ are

Figure 3. B3LYP and MP2 optimized geometries of the six lowest isomers of $\mathrm{C}_{2} \mathrm{Be}_{4}$, together with the relative energies (ΔE in $\mathrm{kcal} / \mathrm{mol}$) and the key bond lengths (in \AA). Values in brackets are MP2 results.
different due to their different structures, we have confirmed that the motions of the modes are the same. This holds for $\mathrm{C}_{2}-\mathrm{E}_{\mathrm{BR}}$ vibrational modes of the $\mathrm{C}_{2} \mathrm{Ga}_{4}$ vs $\mathrm{C}_{2} \mathrm{E}_{4}(E=\mathrm{In}$ and Tl) at the MP2 level. Similar to $\mathbf{1 a} \mathbf{- 4 a}$, the infrared intensities of other modes of $\mathrm{CAl}_{4}{ }^{2-}$ and CAl_{5}^{+}are much smaller. Therefore, their infrared spectra only have strong peaks on the two modes, which may facilitate experimental identification of these species. As shown in the Table 1, the B3LYP frequency values of 1a-4a ($326.8 \sim 547.3 \mathrm{~cm}^{-1}$ for $\mathrm{E}_{\mathrm{BR}}-\mathrm{C}$ stretching, $385.0 \sim 602.4 \mathrm{~cm}^{-1}$ for $\mathrm{E}_{\mathrm{TE}}-\mathrm{C}$ stretching) are in agreement with those of MP2 values. The decreasing vibrational frequencies from 1a to $\mathbf{4 a}$ indicate the weakening $\mathrm{C}-\mathrm{E}$ bonding as E moves down the periodical table. Note that the vibration frequencies of $\mathrm{Al}_{\mathrm{TE}}-\mathrm{C}$ and $\mathrm{Al}_{\mathrm{BR}}-\mathrm{C}$ stretching in $\mathbf{1 a}, 602.4$ and $547.3 \mathrm{~cm}^{-1}$, respectively, are comparable to the $\mathrm{Al}-\mathrm{C}$ stretching at 736.1 cm^{-1} for CAl_{4}^{2-} and $631.9 \mathrm{~cm}^{-1}$ for CAl_{5}^{+}, respectively. Consistently, the $\mathrm{Al}_{\mathrm{TE}}-\mathrm{C}$ and $\mathrm{Al}_{\mathrm{BR}}-\mathrm{C}$ bond lengths, 1.994 and $2.155 \AA$, respectively are compared with the 1.977 in $\mathrm{CAl}_{4}{ }^{2-}$ and $2.107 \AA$ in $\mathrm{CAl}_{5}{ }^{+}$.
$\mathrm{CAl}_{4}{ }^{2-}$ and CAl_{5}^{+}are isoelectronic and have been characterized to be the global minima. ${ }^{27,32}$ In their common $C_{2 v}$ subgroup, $\mathrm{CAl}_{4}{ }^{2-}$ and CAl_{5}^{+}have the same electron configurations except for the orders of the three highest occupied molecular orbitals (MOs) (eqs 2 and 3). $\mathrm{C}_{2} \mathrm{Al}_{4}$ has two electrons more than $\mathrm{CAl}_{4}{ }^{2-}$ and CAl_{5}^{+}and the two extra electrons occupy HOMO-2 (framed in eq 1) which is absent in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$. Except for this orbital, the occupied MOs of 1a have the same symmetries (orbital shapes) as those of $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$(eqs $1-3$ and Figure 4). The HOMO of $\mathrm{CAl}_{4}{ }^{2-}$ and the HOMO-2 of $\mathrm{CAl}_{5}{ }^{+}$,
which were proposed to contribute to stabilizing their ptC arrangements, have a counterpart in $\mathbf{1 a}$ (i.e., the HOMO). Note that a similar orbital is also present in the boraplanes designed by Wang and Schleyer. ${ }^{65}$ The Wiberg bond indices (WBIs) and the NBO charges given by NBO analyses are summarized in Table 2. Although 1a, $\mathrm{CAl}_{4}{ }^{2-}$, and $\mathrm{CAl}_{5}{ }^{+}$are in the different charge states, the C_{2} moiety in 1 a bears charges ($-2.78 e$), close to those of the carbon centers in $\mathrm{CAl}_{4}{ }^{2-}(-2.72 e)$ and $\mathrm{CAl}_{5}{ }^{+}(-2.80 e)$, which, along with their similarities in MO shapes (see Figure 4), suggests that the C_{2} moiety in $\mathbf{1 a}$ can be viewed as the equivalences of the carbon centers in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$. If the C_{2} moiety in $\mathbf{1 a}$ are viewed as an unit to interact with the peripheral Al_{4} ring, then its total WBI of the moiety, 2.02 [(3.11-2.10) $\times 2$], to the Al_{4} periphery is comparable to those, 2.24 in $\mathrm{CAl}_{4}{ }^{2-}$ and 2.15 in $\mathrm{CAl}_{5}{ }^{+}$. This further rationalizes our deduction. Recall that the $\mathrm{C}-\mathrm{Al}$ stretching vibrational modes in 1a, $\mathrm{CAl}_{4}{ }^{2-}$, and $\mathrm{CAl}_{5}{ }^{+}$all are most strongly active while other modes are inactive or have negligible infrared intensities. Therefore, the bonding interactions between the C_{2} moiety and the Al_{4} periphery in $\mathbf{1 a}$ are similar to those between C and Al_{4} or Al_{5} periphery in $\mathrm{CAl}_{4}{ }^{2-}$ and CAl_{5}^{+}, respectively. Indeed, the WBIs of $\mathrm{Al}_{\mathrm{BR}}-$ and $\mathrm{Al}_{\mathrm{TE}}-\mathrm{C}_{2}$ moiety in $\mathbf{1 a}, 0.51$ and 0.56 , respectively, are comparable to the 0.56 in $\mathrm{CAl}_{4}{ }^{2-}$ and 0.43 in $\mathrm{CAl}_{5}{ }^{+}$(Table 2). Due to their different charge states, the electrostatic interactions between the centers and the Al_{4} (or Al_{5}) periphery vary, as reflected by the NBO charges on the Al atoms. However, the $\mathrm{Al}-\mathrm{Al}$ bonding in 1a are different from those in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$. The sum of WBIs of $\mathrm{Al}_{\mathrm{BR}}-\mathrm{Al}(0.29)$ and $\mathrm{Al}_{\mathrm{TE}}-\mathrm{Al}(0.22)$ are significantly smaller than the 1.34 in $\mathrm{CAl}_{4}{ }^{2-}$ and 1.39 in CAl_{5}^{+}. Among the occupied MOs, one can identify that the major contributions to the differences come from HOMO-6 of 1a. This MO in 1a is involved in $\mathrm{C}-\mathrm{Al}_{\mathrm{TE}}$ and $\mathrm{C}-\mathrm{C} \sigma$ bonding, whereas the corresponding orbital (HOMO-5) in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$contribute to the $\sigma \mathrm{Al}$ peripheral bonding. Because 1a is neutral, the charges on the C_{2} moiety are donated by the peripheral Al atoms, the $\mathrm{Al}_{\mathrm{BR}}$ and $\mathrm{Al}_{\mathrm{TE}}$ bear $0.69 e$ and $0.70 e$ positive charges, respectively. In contrast, the Al atoms in $\mathrm{CAl}_{4}{ }^{2-}$ have a much smaller positive charge $(0.18 e)$, which is due to the net negative $2 e$ charges of the dianion. Although $\mathrm{CAl}_{5}{ }^{+}$possesses $1 e$ positive charge, the Al atoms in $\mathrm{CAl}_{5}{ }^{+}$have $0.76 e$ positive charges, comparable to those in $\mathbf{1 a}$. This is because the extra Al atom in $\mathrm{CAl}_{5}{ }^{+}$ compensates the effects of the monocationic charge state of $\mathrm{CAl}_{5}{ }^{+}$.

$$
\begin{align*}
& \mathrm{C}_{2} \mathrm{Al}_{4}:[\text { Core }] \mathrm{A}_{1}{ }^{2} \mathrm{~B}_{2}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~B}_{1}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~B}_{2}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~B}_{2}{ }^{2} \mathrm{~A}_{1}{ }^{2} \tag{1}\\
& \text { CAI }{ }^{2-} \text { : }[\text { Core }] A_{1}{ }^{2} \mathrm{~B}_{2}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~B}_{1}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~B}_{2}{ }^{2} \quad \mathrm{~B}_{2}{ }^{2} \mathrm{~A}_{1}{ }^{2} \tag{2}\\
& \mathrm{CAl}_{5}{ }^{+} \text {: [Core] } \mathrm{A}_{1}{ }^{2} \mathrm{~B}_{2}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~B}_{1}{ }^{2} \mathrm{~A}_{1}{ }^{2} \mathrm{~A}_{1}{ }^{2} \quad \mathrm{~B}_{2}{ }^{2} \mathrm{~B}_{2}{ }^{2} \tag{3}
\end{align*}
$$

The natural electron configurations of Al atoms in $\mathbf{1 a}, \mathrm{CAl}_{4}{ }^{2-}$, and $\mathrm{CAl}_{5}{ }^{+}$are compared in Table 3. Similar to $\mathrm{CAl}_{4}{ }^{2-}$ and

TABLE 1: Wavenumbers (WN, in cm^{-1}) of the Most Active C-E Stretching Modes with Their Symmetries (SYM) and Intensities (Int , in $\mathrm{km} / \mathrm{mol}$) of $\mathbf{1 a}-\mathbf{4 a}, \mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$, Calculated at B3LYP and MP2 (in parentheses) Levels ${ }^{a}$

	$\mathrm{E}_{\mathrm{TE}}-\mathrm{C}$ stretching			$\mathrm{E}_{\mathrm{BR}}-\mathrm{C}$ stretching		
	SYM	WN	Int	SYM	WN	Int
$\mathrm{C}_{2} \mathrm{Al}_{4}(\mathbf{1 a})$	$B_{1 u}\left(B_{1 u}\right)$	602.4 (615.9)	635.2 (626.7)	$B_{2 u}\left(B_{2 u}\right)$	547.3 (571.6)	372.3 (366.9)
$\mathrm{C}_{2} \mathrm{Ga}_{4}(\mathbf{2 a})$	$B_{1 u}\left(B_{2}\right)$	499.0 (581.2)	527.8 (617.0)	$B_{2 u}\left(A_{1}\right)$	423.7 (539.0)	252.3 (319.2)
$\mathrm{C}_{2} \mathrm{In}_{4}(\mathbf{3 a})$	$B_{1 u}\left(B_{2}\right)$	422.4 (497.2)	352.9 (450.7)	$B_{2 u}\left(B_{1}\right)$	370.6 (458.1)	172.9 (256.3)
$\mathrm{C}_{2} \mathrm{Tl}_{4}(\mathbf{4 a})$	$B_{1 u}\left(B_{2}\right)$	385.0 (468.8)	229.4 (397.5)	$B_{2 u}\left(B_{1}\right)$	326.8 (439.3)	93.4 (210.2)

[^1]

Figure 4. Comparisons of the occupied valence MOs of $\mathbf{1 a}$ with those of $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$.
TABLE 2: NBO Charges (in e) and Wiberg Bond Indices (WBI) of $\mathbf{1 a}-4 \mathrm{a}, \mathrm{CAl}_{4}{ }^{2-}$, and $\mathrm{CAl}_{5}{ }^{+}$

	$q_{\text {c }}$	q_{E}		WBI $_{\text {c }}$	$\mathrm{WBI}_{\mathrm{E}}$		$\mathrm{WBI}_{\mathrm{C}-\mathrm{c}}$	$\mathrm{WBI}_{\text {E-CC }}$		$\mathrm{WBI}_{\text {E-Es }}$	
		$\mathrm{E}_{\text {BR }}$	$\mathrm{E}_{\text {TE }}$		$\mathrm{E}_{\text {BR }}$	$\mathrm{E}_{\text {TE }}$		$\mathrm{E}_{\text {BR }}$	$\mathrm{E}_{\text {TE }}$	$\mathrm{E}_{\text {BR }}$	$\mathrm{E}_{\text {TE }}$
$\mathrm{C}_{2} \mathrm{Al}_{4}(\mathbf{1 a})$	-1.39	+0.69	+0.70	3.11	0.80	0.72	2.10	0.51	0.50	0.29	0.22
$\mathrm{C}_{2} \mathrm{Ga}_{4}(\mathbf{2 a)}$	-1.19	+0.59	+0.60	3.30	0.86	0.83	2.17	0.57	0.54	0.32	0.25
$\mathrm{C}_{2} \mathrm{In}_{4}(3 \mathrm{a})$	-1.11	+0.55	+0.56	3.36	0.90	0.89	2.35	0.48	0.54	0.42	0.35
$\mathrm{C}_{2} \mathrm{Tl}_{4}(4 \mathrm{a})$	-1.01	+0.50	+0.51	3.42	0.93	0.95	2.44	0.45	0.53	0.48	0.42
$\mathrm{C}_{2} \mathrm{~B}_{4}$	-1.02	+0.45	+0.57	3.43	1.31	0.90	1.74	0.95	0.73	0.36	0.16
$\mathrm{CAl}_{4}{ }^{\text {- }}$	-2.72		+0.18	2.24		1.90			0.56		1.34
$\mathrm{CAl}_{5}{ }^{+}$	-2.80		+0.76	2.14		1.99			0.43		1.56
$\mathrm{C}_{2} \mathrm{H}_{4}$	-0.37		+0.18	3.94		0.81	2.05		0.95		0.02

TABLE 3: Natural Electron Configurations of \mathbf{E} Atoms in $1 \mathrm{a}-4 \mathrm{a}, \mathrm{CAl}_{4}{ }^{2-}$, and $\mathrm{CAl}_{5}{ }^{+}$

		s	p_{x}	p_{y}	p_{z}
$\mathbf{1 a}$	$\mathrm{Al}_{\mathrm{TE}}$	1.83	0.26	0.19	0.01
	$\mathrm{Al}_{\mathrm{BR}}$	1.83	0.24	0.22	0.01
$\mathbf{2 a}$	$\mathrm{Ga}_{\mathrm{TE}}$	1.88	0.27	0.24	0.01
	$\mathrm{Ga}_{\mathrm{BR}}$	1.90	0.30	0.19	0.02
$\mathbf{3 a}$	$\mathrm{In}_{\mathrm{TE}}$	1.90	0.23	0.34	0.01
	$\mathrm{In}_{\mathrm{BR}}$	1.92	0.35	0.35	0.01
$\mathbf{4 a}$	$\mathrm{Tl}_{\mathrm{TE}}$	1.93	0.22	0.34	0.01
	$\mathrm{Tl}_{\mathrm{BR}}$	1.95	0.39	0.15	0.01
$\mathrm{CAl}_{4}{ }^{2-}$		1.53	0.61	0.56	0.10
$\mathrm{CAl}_{5}{ }^{+}$		1.45	0.38	0.30	0.09

$\mathrm{CAl}_{5}{ }^{+}$, the $\mathrm{Al} 3 \mathrm{p}_{z}$ orbital in 1a has very small occupancy, $0.01 e$, in comparison with $0.10 e\left(\mathrm{CAl}_{4}{ }^{2-}\right)$ and $0.09 e\left(\mathrm{CAl}_{5}{ }^{+}\right)$. Because $\mathrm{CAl}_{4}{ }^{2-}$ is $2 e$ negatively charged, its σ electron $\left(3 p_{x}+3 p_{y}\right)$ occupancy (1.17e) of Al atom is larger than the $0.68 e$ in $\mathrm{CAl}_{5}{ }^{+}$ and $0.45 e$ of $\mathrm{Al}_{\mathrm{TE}} / 0.46 e$ of $\mathrm{Al}_{\mathrm{BR}}$. The natural electron configuration points out that Al ligands mainly serve as σ electron donors in the three species. Previously, on the basis of the electronic structures of planar methane, Hoffmann, Alder, and Wilcox ${ }^{1}$ suggested using σ-donor $/ \pi$-acceptor ligands to enhance the electronic deficient σ bonding between ptC and ligands and delocalize the unfavorable lone pair on ptC of planar methane. However, $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$have MOs similar to the lone pair in the planar methane. Note that there are π interactions between ptC and peripheral Al atoms, but the interactions are small (see HOMO-4 in Figure 4). We ${ }^{66}$ have rationalized the phenomena in the $\mathrm{C}(\mathrm{BeH})_{4}{ }^{2-}$ system, and partially attributed to the weakening effects on the rigidity of the tetrahedral carbon, exerted by the metallic ligands. In contrast, 1a has no such π lone-pair but a $\mathbf{C}-\mathbf{C} \pi$ bonding orbital (HOMO-5) predominantly located on the C_{2} moiety. One may ask that the $\mathrm{Al}-\mathrm{Al}$ bonding in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$is much stronger than that in $\mathbf{1 a}$, why 1a still can achieve the planarity? The answer is that the energetic benefit due to the $\mathrm{C}-\mathrm{C} \pi$ bonding in 1a compensate the energetic favorable Al_{4} (or Al_{5}) σ peripheral bonding
(HOMO-5) in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$, which are supported by the relatively larger $\mathrm{WBI}_{\mathrm{C}}$ (3.11 vs. 2.24 and 2.14) and smaller $\mathrm{WBI}_{\mathrm{Al}-\mathrm{Als}}$ (less than 0.3 vs. 1.34 and 1.56) in $\mathbf{1 a}$ than those in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$.

The above analyses have revealed that the C_{2} moiety in $\mathbf{1 a}$ can be considered as the equivalence of carbon center in $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$. How feasible can another carbon be embedded into the Al_{4} ring? If considering $\mathbf{1 a}$ as the product of $\mathrm{CAl}_{4}\left(T_{d}\right.$, the global minimum $\left.{ }^{67}\right)+\mathrm{C}\left({ }^{3} \mathrm{P}\right)$ reaction, the reaction enthalpies $\left(\Delta H^{0}\right)$ are $-156.9,-163.8,-185.0 \mathrm{kcal} / \mathrm{mol}$ at the B3LYP, MP2, and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$ levels, respectively, indicating the high energetic favorableness of incorporating a C atom into T_{d} CAl_{4}.

Summarizing the above comparisons, one can concisely understand the stabilities of these species as illustrated by Figure 5. For $\mathrm{CAl}_{4}{ }^{2-}$, addition of the two electrons in $T_{d} \mathrm{CAl}_{4}$ results in the ptC global minimum, because the two extra electrons take the advantage of the peripheral bonding MO^{27} (a useful orbital not being utilized in neutral $D_{4 h} \mathrm{CAl}_{4}$, which is the thirdorder saddle point). The two electrons in $\mathrm{CAl}_{5}{ }^{+}$are introduced by adding an Al^{+}in the Al_{4} ring. In $\mathbf{1 a}$, the addition of two electrons is fulfilled by introducing another carbon in the center. Although the carbon brings four electrons, two of them are used for an internal $\mathrm{C}-\mathrm{C}$ bonding. The neutrality of 1a may facilitate

Figure 5. Relationships of $\mathrm{CAl}_{4}, \mathrm{CAl}_{4}{ }^{2-}, \mathrm{CAl}_{5}{ }^{+}$, and $\mathrm{C}_{2} \mathrm{Al}_{4}$.

Figure 6. B3LYP and MP2 optimized geometries of $\mathrm{OAl}_{4}, \mathrm{NAl}_{4}^{-}$, $\mathrm{BeOAl}_{4}, \mathrm{BNAl}_{4}, \mathrm{CNAl}_{4}^{+}$, and CBAl_{4}^{-}, together with the smallest harmonic frequencies ($V_{\min }$ in cm^{-1}) and the geometrical parameters (the bond lengths in \AA and bond angles in degree. The values in bracket are the MP2 results.
generation and detection in the experiments (e.g., low temperature matrix isolation).
The established equivalence relationship can be used to design more molecules with planar tetracoordinate heteroatoms (Figure 6, the Cartesian coordinates are given in the SI3). The previously reported OAl_{4} and NAl_{4}^{-}are reconfirmed to be minima in the present levels of theories. Similarly, at both B3LYP and MP2 levels, the replacements of C_{2} moiety in $\mathrm{C}_{2} \mathrm{Al}_{4}$ by the isoelectronic $\mathrm{BeO}, \mathrm{BN}, \mathrm{BC}^{-}$, and CN^{+}moieties also lead to minima, $\mathrm{BeOAl}_{4}, \mathrm{BNAl}_{4}, \mathrm{BCAl}_{4}^{-}$, and $\mathrm{CNAl}_{4}{ }^{+}$. Due to the stronger metallic characters and bigger radius of Be and B than C , the terminal Al atoms bonded to Be or B in BeOAl_{4} and BNAl_{4} and $\mathrm{BCAl}_{4}{ }^{-}$bend away from the BeO or BC axes. Consistently, the bending Al atom in BeOAl_{4} is further away from the BeO axis than the Al atoms in BNAl_{4} and BCAl_{4}^{-}from BN and BC axis. The terminal Al atoms in CNAl_{4}^{+}lie along the CN axis.

The $\mathrm{C}-\mathrm{C}$ double bonding $\left(\mathrm{WBI}_{\mathrm{C}=\mathrm{C}}=2.11\right)$ and $D_{2 h}$ symmetry of 1a reminds us of the classical ethene. As reflected by the WBIs and NBO charges (Table 2), the replacement of hydrogens in ethene by alumina results in the common differences expected on the basis of the fact that Al is more metallic than H. The MO analyses give more insights. As compared in the Figure 7, the eight more valence electrons in $\mathbf{1 a}$ than in $\mathrm{C}_{2} \mathrm{H}_{4}$ can be assigned to the HOMO-4 to HOMO-1 MOs (right column), which can be considered as nonbonding MOs. Note that $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$also have four occupied nonbonding MOs (including the HOMO-5, see Figure 4). Interestingly, although Al has two more valence electrons available than hydrogen, they are not efficiently utilized for bonding interactions and occupy the nonbonding orbitals (i.e., the HOMO-1~HOMO-4 of $\mathrm{C}_{2} \mathrm{Al}_{4}$, as shown in Figure 7) in these species. The pair of HOMO-9 and HOMO-8 in 1a corresponds to the pair of HOMO-5 and HOMO-4 in $\mathrm{C}_{2} \mathrm{H}_{4}$, which originates from the bonding and antibonding interactions between two carbon 2 s orbitals. The π (HOMO-5) and σ (HOMO-6) MOs in 1a have counterparts in ethene, HOMO and HOMO-2, respectively. The essential differences lie in the HOMO and HOMO-7 of 1a. On the basis of the consideration of orbital symmetry, the two MOs of 1a correspond to HOMO-1 and HOMO-3 of ethene, respectively. The ethene HOMO- 1 contributes to the $\mathrm{C}-\mathrm{H} \sigma$ bonding and has negative contribution to the $\mathrm{C}-\mathrm{C}$ bonding, whereas the corresponding orbital (HOMO) of 1a contributes to the peripheral Al_{4} bonding and the antibonding interaction between carbons is negligible, which reflects the differences between

Figure 7. Comparison of the valence MOs of 1a with those of ethylene.

Al and H atoms, that is, Al has p electrons available for such covalent bonding. The ethene HOMO-3 contribute to the four $\mathrm{C}-\mathrm{H}$ bonds and $\mathrm{C}-\mathrm{C}$ bonding, in contrast, the electrons in HOMO-7 of $\mathbf{1 a}$ bound two of the Al atoms in the bridging positions. This can be attributed to the electron deficiency of the Al atom, similar to the bridging hydrogens in carbocations.

The MOs of 1a, 2a, 3a, and 4a, given in SI6, indicate the similarities in their electronic structures, although the MO energy order may vary. However, the individual characters of the ligands results in differences in their bonding as quantified by WBI and NBO charges. As the E atoms move down the periodical table (from Al to Tl), because their electronegativities (1.5(Al), $1.6(\mathrm{Ga}), 1.7(\mathrm{In}), 1.8(\mathrm{Tl}))^{68}$ increase, the NBO charges on the C_{2} moieties, $-2.78,-2.38,-2.22$, and $-2.02 e$ for $\mathbf{1 a}-\mathbf{4 a}$, respectively, decrease gradually. The decreasing $\mathrm{C}-\mathrm{C}$ bond lengths, $1.311,1.298,1.282$, and $1.274 \AA$ in $\mathbf{1 a - 4 a}$, respectively, are consistent with the increasing $\mathrm{WBI}_{\mathrm{C}-\mathrm{C}}$, $2.10(\mathbf{1 a}), 2.17$ (2a), 2.35 (3a), and 2.44 (4a), respectively.

Boron is the only exception for Group IIIA elements to form $D_{2 h} \mathrm{C}_{2} \mathrm{~B}_{4}$ species with dptCs. Zeng et al. ${ }^{31}$ have explored the PES of $\mathrm{C}_{2} \mathrm{~B}_{4}$. Our calculations at the B3LYP/aug-cc-pVTZ level showed the $D_{2 h} \mathrm{C}_{2} \mathrm{~B}_{4}$ with dptCs is a forth-order saddle point and $187.3 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the reported global minimum, ${ }^{31}$ in which two carbons bond to a B_{4} ring externally. We reason as follows: As discussed in our $\mathrm{C}(\mathrm{BeH})_{4}{ }^{2-}$ paper, ${ }^{66}$ the rigidity of a tetrahedral carbon become weaker as the ptCligand bonds become less covalent. The average WBI of $\mathrm{C}-\mathrm{B}$ bonds in the $D_{2 h} \mathrm{C}_{2} \mathrm{~B}_{4}, 0.84$, is substantially larger than the average WBIs $(0.51,0.56,0.51$, and 0.49) in $\mathbf{1 a}-\mathbf{4 a}$, respec-
tively. Although $D_{2 h} \quad \mathrm{C}_{2} \mathrm{~B}_{4}$ also possesses a B_{4} peripheral occupied MOs similar to HOMO and HOMO-5 of $\mathrm{C}_{2} \mathrm{Al}_{4}$, the B_{4} ring is too small to accommodate two carbons. Note that the $D_{4 h} \mathrm{CB}_{4}{ }^{2-}$ is even not a minimum (it is a second-order saddle point).

3. Conclusions

Using ab initio and DFT calculations, we have searched for the smallest species with dptCs. The scanning on the candidates, $\mathrm{C}_{2} \mathrm{E}_{4}$ ($E=$ the second- and third-row main group elements) resulted in three minima $\left(\mathrm{C}_{2} \mathrm{E}_{4}(E=\mathrm{Be}, \mathrm{Mg}\right.$, and Al$)$. The DFT PES exploration shows the $\mathrm{C}_{2} \mathrm{E}_{4}(E=\mathrm{Al}-\mathrm{Tl})$ not only has structures with dptCs but are also global minima. At the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2$ level, they are confirmed again to be the global minima, and locate $18.0,18.3,13.4$, and $12.2 \mathrm{kcal} / \mathrm{mol}$ lower than their nearest isomers, respectively. $\mathrm{C}_{2} \mathrm{Be}_{4}$ is a local minimum. The comparisons of $D_{2 h} \mathrm{C}_{2} \mathrm{Al}_{4}$ with $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$ uncover that the C_{2} moiety in the former is the equivalence of the carbon centers in the later. Concisely, the stabilities of these species can be rationalized as follow: The addition of two electrons in CAl_{4} (i.e., $\mathrm{CAl}_{4}{ }^{2-}$) can utilize a Al_{4} peripheral bonding MO. $\mathrm{CAl}_{5}{ }^{+}$obtains the two electrons by incorporating an Al^{+}atom in the ring. The addition of two electrons in $\mathrm{C}_{2} \mathrm{Al}_{4}$ (and its analogs) is fulfilled by incorporating a carbon in the center of CAl_{4}. Although the carbon brings four electrons, two of them are utilized for an internal $\mathrm{C}-\mathrm{C}$ bonding. Although DFT calculations characterized $\mathbf{1 a}-\mathbf{4 a}$ to have $D_{2 h}$ structures with perfect dptCs, the MP2 optimizations distorted the $D_{2 h}$ symmetry slightly. The energy differences between $D_{2 h}$ and the distorted structures are marginal ($<0.02 \mathrm{kcal} / \mathrm{mol}$). The MO comparisons of $1 \mathbf{a}$ with ethene further rationalized the origins of $\mathbf{1 a} \mathbf{- 4 a}$ to achieve dptCs.

Acknowledgment. We dedicate the work to Professor Pin Yang on the occasion of his 75th birthday. The authors thank the Shanxi University, the Chinese Academy of Sciences and NSFC (20773160 to Z.X.W. and 20573088 to S.D.L.) for funding. The authors appreciate Prof. Yue-Kui Wang and Dr. Cai-Xia Yuan for their valuable discussions.

Supporting Information Available: The Cartesian coordinates and total energies of $\mathbf{1 a} \mathbf{- 4 a}$ and their three singlet isomers, three triplet isomers, the $\mathrm{C}_{2} \mathrm{Be}_{4}$ isomers and the $\mathrm{OAl}_{4}, \mathrm{NAl}_{4}^{-}$, $\mathrm{BeOAl}_{4}, \mathrm{BNAl}_{4}, \mathrm{BCAl}_{4}^{-}$, and CNAl_{4}^{+}, the pictures and relative energies of triplet isomers for $\mathbf{1 a}-\mathbf{4 a}$, the pictures of occupied valence MOs of $\mathbf{1 a}-\mathbf{4 a}$ and $\mathrm{C}_{2} \mathrm{~B}_{4}$, and the complete ref 60 . This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Hoffmann, R.; Alder, R. W.; Wilcox, C. F., Jr, J. Am. Chem. Soc. 1970, 92, 4992.
(2) Monkhorst, H. J. Chem. Commun. 1968, 1111.
(3) Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.; Pople, J. A. J. Am. Chem. Soc. 1976, 98, 5419.
(4) Keese, R. Chem. Rev. 2006, 106, 4787, and references therein.
(5) Merino, G.; Mendez-Rojas, M. A.; Vela, A.; Heine, T. J. Comput.

Chem. 2007, 28, 362, and references therein.
(6) Siebert, W.; Gunale, A. Chem. Soc. Rev 1999, 28, 367, and references therein.
(7) Sorger, K.; Schleyer, P. v. R. J. Mol. Struct.: Theochem. 1995, 338, 317, and references therein.
(8) Rottger, D.; Erker, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 813, and references therein.
(9) Radom, L.; Rasmussen, D. R. Pure Appl. Chem. 1998, 70, 1977, and references therein.
(10) Wang, Z. X.; Schleyer, P. v. R. Science 2001, 292, 2465.
(11) Exner, K.; Schleyer, P. v. R. Science 2000, 290, 1937.
(12) Islas, R.; Heine, T.; Ito, K.; Schleyer, P. V. R.; Merino, G. J. Am. Chem. Soc. 2007, 129, 14767.
(13) Li, S. D.; Ren, G. M.; Miao, C. Q.; Jin, Z. H. Angew. Chem., Int. Ed. 2004, 43, 1371.
(14) Lein, M.; Frunzke, J.; Frenking, G. Angew. Chem., Int. Ed. 2003, 42, 1303.
(15) Li, S. D.; Miao, C. Q. J. Phys. Chem. A 2005, 109, 7594.
(16) Li, S. D.; Ren, G. M.; Miao, C. Q. Inorg. Chem. 2004, 43, 6331.
(17) Luo, Q. Sci. Chin., Ser. B: Chem. 2008, 51, 607.
(18) Averkiev, B. B.; Boldyrev, A. I. Russ. J. Gen. Chem. 2008, 78, 769.
(19) Erhardt, S.; Frenking, G.; Chen, Z. F.; Schleyer, P. v. R. Angew. Chem., Int. Ed. 2005, 44, 1078.
(20) Minyaev, R. M.; Avakyan, V. E.; Starikov, A. G.; Gribanova, T. N.; Minkin, V. I. Dokl. Chem. 2008, 419, 101.
(21) Minyaev, R. M.; Gribanova, T. N.; Minkin, V. I.; Starikov, A. G.; Hoffmann, R. J. Org. Chem. 2005, 70, 6693.
(22) Sun, W. X.; Zhang, C. J.; Cao, Z. X. J. Phys. Chem. C 2008, 112, 351.
(23) Zhang, C. J.; Sun, W. X.; Cao, Z. X. J. Am. Chem. Soc. 2008, 130, 5638.
(24) Wu, Y. B.; Yuan, C. X.; Gao, F.; Lu, H. G.; Guo, J. C.; Li, S. D.; Wang, Y. K.; Yang, P. Organometallics 2007, 26, 4395.
(25) Li, X.; Wang, L. S.; Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc. 1999, 121, 6033.
(26) Wang, L. S.; Boldyrev, A. I.; Li, X.; Simons, J. J. Am. Chem. Soc. 2000, 122, 7681.
(27) Li, X.; Zhang, H. F.; Wang, L. S.; Geske, G. D.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2000, 39, 3630.
(28) Wang, L. M.; Huang, W.; Averkiev, B. B.; Boldyrev, A. I.; Wang, L. S. Angew. Chem., Int. Ed. 2007, 46, 4550.
(29) Averkiev, B. B.; Zubarev, D. Y.; Wang, L. M.; Huang, W.; Wang, L. S.; Boldyrev, A. I. J. Am. Chem. Soc. 2008, 130, 9248.
(30) Sateesh, B.; Reddy, A. S.; Sastry, G. N. J. Comput. Chem. 2007, 28, 335.
(31) Pei, Y.; Zeng, X. C. J. Am. Chem. Soc. 2008, 130, 2580.
(32) Pei, Y.; An, W.; Ito, K.; Schleyer, P. v. R.; Zeng, X. C. J. Am. Chem. Soc. 2008, 130, 10394.
(33) Roy, D.; Corminboeuf, C.; Wannere, C. S.; King, R. B.; Schleyer, P. v. R. Inorg. Chem. 2006, 45, 8902.
(34) Li, S. D.; Guo, J. C.; Miao, C. Q.; Ren, G. M. Angew. Chem., Int. Ed. 2005, 44, 2158.
(35) Li, S. D.; Miao, C. Q.; Ren, G. M.; Guo, J. C. Eur. J. Inorg. Chem. 2006, 2567.
(36) Ito, K.; Chen, Z. F.; Corminboeuf, C.; Wannere, C. S.; Zhang, X. H.; Li, Q. S.; Schleyer, P. v. R. J. Am. Chem. Soc. 2007, 129, 1510.
(37) Luo, Q.; Zhang, X. H.; Huang, K. L.; Liu, S. Q.; Yu, Z. H.; Li, Q. S. J. Phys. Chem. A 2007, 111, 2930.
(38) Li, S. D.; Miao, C. Q.; Guo, J. C. J. Phys. Chem. A 2007, 111, 12069.
(39) Shahbazian, S.; Alizadeh, S. J. Phvs. Chem. A 2008, 112, 10365. (40) Merino, G.; Mendez-Rojas, M. A.; Vela, A. J. Am. Chem. Soc. 2003, 125, 6026.
(41) Merino, G.; Mendez-Rojas, M. A.; Beltraan, H. I.; Corminboeuf, C.; Heine, T.; Vela, A. J. Am. Chem. Soc. 2004, 126, 16160.
(42) Pancharatna, P. D.; Mendez-Rojas, M. A.; Merino, G.; Vela, A.; Hoffmann, R. J. Am. Chem. Soc. 2004, 126, 15309.
(43) Perez, N.; Heine, T.; Barthel, R.; Seifert, G.; Vela, A.; MendezRojas, M. A.; Merino, G. Org. Lett. 2005, 7, 1509.
(44) Perez-Peralta, N.; Sanchez, M.; Martin-Polo, J.; Islas, R.; Vela, A.; Merino, G. J. Org. Chem. 2008, 73, 7037.
(45) Esteves, P. M.; Ferreira, N. B. P.; Corroa, R. J. J. Am. Chem. Soc. 2005, 127, 8680.
(46) Yang, L. M.; Ding, Y. H.; Sun, C. C. J. Am. Chem. Soc. 2007, 129, 1900.
(47) Yang, L. M.; Ding, Y. H.; Sun, C. C. J. Am. Chem. Soc. 2007, 129, 658.
(48) Peterson, K. A. J. Chem. Phys. 2003, 119, 11099.
(49) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L. S.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045.
(50) Feller, D. J. Comput. Chem. 1996, 17, 1571.
(51) Lu, H.-G. In GXYZ Ver. 1.0, A Random Cartesian Coordinates Generating Program; Shanxi University: Taiyuan, 2008. We also examined the method by exploring the PESs of $\mathrm{CCu}_{4}{ }^{2+}$ and $\mathrm{CAl}_{5}{ }^{+}$and the same global minima were found as reported.
(52) Saunders, M. J. Comput. Chem. 2004, 25, 621.
(53) Bera, P. P.; Sattelmeyer, K. W.; Saunders, M.; Schaefer, H. F.; Schleyer, P. v. R. J. Phvs. Chem. A 2006, 110, 4287.
(54) Naumkin, F. Y. J. Phvs. Chem. A 2008, 112, 4660.
(55) Schreiner, P. R. Angew. Chem., Int. Ed. 2007, 46, 4217.
(56) Schreiner, P. R.; Fokin, A. A.; Pascal, R. A.; de Meijere, A. Org. Lett. 2006, 8, 3635.
(57) Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. Org. Lett. 2006, 8, 3631.
(58) Check, C. E.; Gilbert, T. M. J. Org. Chem. 2005, 70, 9828.
(59) Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K. J. Phys. Chem. A 2000, 104, 5850.
(60) Frisch, M. J. In Gaussian 03 Revision E.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(61) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88 , 899.
(62) Weinhold, F.; Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: New York, 2003.
(63) Boldyrev, A. I.; Wang, L. S. J. Phys. Chem. A 2001, 105, 10759.
(64) Ghouri, M. M.; Yareeda, L.; Mainardi, D. S. J. Phys. Chem. A 2007, 111, 13133.
(65) Wang, Z. X.; Schleyer, P. v. R. J. Am. Chem. Soc. 2001, 123, 994.
(66) Wang, Z. X.; Zhang, C. G.; Chen, Z. F.; Schleyer, P. v. R. Inorg. Chem. 2008, 47, 1332.
(67) Zubarev, D. Y.; Boldyrev, A. I. J. Chem. Phys. 2005, 122.
(68) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed; Elsevier, Ltd: Leeds, 1997.

JP8099187

[^0]: * To whom correspondence should be addressed. E-mail: wyb@sxu.edu.cn; zxwang@gucas.ac.cn.
 ${ }^{\dagger}$ Institute of Molecular Science, the Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University.
 * College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences.

[^1]: ${ }^{a}$ Note that the $\mathrm{C}-\mathrm{Al}$ stretching modes of $\mathrm{CAl}_{4}{ }^{2-}$ and $\mathrm{CAl}_{5}{ }^{+}$are degenerated.

