Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Materials Letters 62 (2008) 4031-4034

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats

Rui Chen, Shizhen Zhao, Gaoyi Han*, Jianhua Dong*

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006 PR China

ARTICLE INFO

Article history: Received 29 February 2008 Accepted 22 May 2008 Available online 11 June 2008

Keywords: Electrospinning Polypyrrole Silver Polyacrylonitrile

ABSTRACT

The AgNO₃/polyacrylonitrile hybrid nanofibers were prepared by using electrospinning technique, then the hybrid fibers of AgNO₃/polyacrylonitrile were treated with pyrrole in the boiling toluene medium, finally, the silver/polypyrrole/polyacrylonitrile composite fibrous mats were obtained. The scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman spectra were used to characterize the obtained silver/polypyrrole/polyacrylonitrile composite fibrous mats. And the results indicated that the morphologies of the composite fibers were influenced by the content of AgNO₃ in the AgNO₃/ polyacrylonitrile fibers. The silver/polypyrrole composite dispersed in the fibrous mats exhibited core-shell structure, and the conductivity of the optimum silver/polypyrrole/polyacrylonitrile composite fibrous mats is relatively high.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Polypyrrole (PPy), one of the most important conducting polymers, has been attracted much attention for its potential applications in batteries, supercapacitors, microwave shielding, sensors and actuators [1–6]. Recently, many efforts have been focused on the preparation of metal nanoparticle/conducting polymer (CP) composites including metal nanoparticles embedded in a CP matrix, metal/CP coaxial nanocables and metal/CP coreshell nanoparticles [7–10]. In most previous reports, metal/CP composite nanostructures have mainly been prepared by polymerization monomer moieties in the presence of metal nanoparticles [7–9] or through a template guided synthesis approach [10] in which the metal salts and monomer are used as oxidizer and reducer, respectively.

On the other hand, electrospinning technique has been recognized as an efficient method to manufacture nanoscale fibrous structures [11,12]. The fibrous mats such as organic, inorganic and organic–inorganic hybrid nanofibrous mats (such as Ag/PAN) with a large surface-area-to-volume ratio have been fabricated by eletrospinning technique because of their potential application in such fields as drug delivery, tissue scaffold and sensors [11–16]. Furthermore, the soluble conducting polymers such as pristine polyaniline and its derivatives [17] have been fabricated into nanofibers by electrospinning. Recently, the PPy fibrous mats have also been prepared through the method of combining electrospinning and vapor phase polymerization [18]. In this paper we describe the fabrication of the composite nanofibers of Ag/PPy/polyacrylonitrile (PAN). The conductivities and the evolution of the morphologies of the composite mats have also been investigated.

2. Experimental procedure

AgNO₃ (99.8%) was purchased from Beijing Chemical Plant. Pyrrole monomer (Chinese Army Medical Institute) was distilled under reduced pressure and stored below 0°C before use. PAN (M_W = 86000) was obtained from Aldrich, and all other reagents were reagent grade.

Different amount of $AgNO_3$ was dissolved in the solution of PAN (90mg) in dimethylformamide (1.0ml) under stirring. Then the mixture was transferred into a plastic pipette with the inner diameter of ~ 1mm. The potential for electrospinning was kept at ~ 13.7kV, and the resulted fibers were collected on a sheet of grounded aluminum foil placed 12cm below the plastic pipette tip. The contents of $AgNO_3$ in the $AgNO_3$ /PAN hybrid fibrous mats were 10, 36, 52, 62 and 69% when the electrospinning solutions contain 10, 50, 100, 150 and 200mg $AgNO_3$, respectively.

The AgNO₃/PAN mats were peeled off the aluminum foil and put into the boiling mixture of 50µl pyrrole and 20ml toluene. Then the pyrrole was oxidized by silver ions, yielding PPy and elemental Ag simultaneously [20]. After having being kept for boiling 15min, the mixture was then cooled automatically to room temperature. After being washed three times by methanol, the black fibrous mats were collected and dried under vacuum for 24h.

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs images were recorded on a JEOL-JSM-6700F and H-600-2 (Hitachi, Japan) microscopic analyzer, respectively. Raman spectra were recorded on a RM 2000 microscopic

^{*} Corresponding authors. Tel.: +86 351 7010699; fax: +86 351 7016358. *E-mail address:* han_gaoyis@sxu.edu.cn (G. Han).

⁰¹⁶⁷⁻⁵⁷⁷X/\$ – see front matter S 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.matlet.2008.05.054

R. Chen et al. / Materials Letters 62 (2008) 4031-4034

confocal Raman spectrometer by employing a 633nm laser beam. XRD patterns were measured by a Bruker D8 Advance X-ray diffractometer (Cu K α radiation). The electrical conductivity was measured by the four-probe method.

3. Results and discussion

When the hybrid AgNO₃/PAN fibers contain 0, 10, 36, 52, 62 and 69% AgNO₃, the average diameters of the hybrid fibers are 245, 180, 214, 230, 280 and 292nm, respectively (see supporting materials). Similar to the literature [13], low AgNO₃ content can decrease the diameters of the hybrid fibers. However, when the AgNO₃ concentration increases further, the diameters of the hybrid fibers increase because of the high content of the solute in the electrospinning solution. The typical SEM image of AgNO₃/PAN fibers (62% AgNO₃) is shown in (Fig. 1A), the fibers exhibit a smooth surface although the content of AgNO₃ is as high as 62%. There are many gaps distributed in the mats. The other hybrid fibers containing different amounts of AgNO₃ exhibit the similar morphologies to Fig. 1A. When the content of AgNO₃ in the hybrid fibers is allows as 10%, there are 300nm (Fig. 1B), and the surface of the fibers is almost smooth. However, there are a large number of particles with a relatively narrow distribution dispersed on the surface

of Ag/PPy/PAN fibers (~ 350nm) prepared from AgNO₃/PAN fibers containing 36% AgNO₃ (Fig. 1C). When the content of AgNO₃ reaches to 52%, the particles with the diameters of 50–100nm (Fig. 1D) are observed on the fibers (~ 390nm) surfaces. As the content of AgNO₃ increases to 62%, besides the further increase of the fibers average diameters (590nm) and the particles sizes, the gaps distributed in the mats are filled partly by the formed PPy (Fig. 1E). By increasing the content of AgNO₃ to 69% further, the fibers average diameters reach to 750nm and the pores distributed in the mats almost disappear because of the more formed PPy, and there are large clusters (> 300nm) dispersed on the mats surface. From the EDX spectrum inserted in Fig. 1F, we find that the large clusters are compose of silver, carbon and nitrogen. The silver particles are formed when AgNO₃/PAN fibers are treated with pyrrole monomer, which, at the same time is oxidized to form PPy. So the diameters of Ag/PPy/PAN fibers become larger than that of AgNO₃/PAN fibers

As shown in TEM images, there are nanoparticles with average diameters of ~ 13nm and relatively narrow distribution (Fig. 2A) dispersed in the Ag/PPy/PAN fibers prepared from AgNO₃/PAN fibers containing 10% AgNO₃. When the content of AgNO₃ reaches to 36%, the diameters of the formed nanoparticles reach to about 38nm (Fig. 2B). In Ag/PPy/PAN fibers prepared from AgNO₃/PAN fibers (52% AgNO₃), the distribution of Ag particles becomes wider, and the size of the particles reaches to ~ 75nm (Fig. 2C). Furthermore, we find that Ag particles are coated with a shell of PPy with an average thickness of 20nm. By increasing the content of AgNO₃ (62%) further, the particles with a wide distribution and large size (50 ~ 150nm) are

Fig. 1. SEM images of (A) the AgNO₃/PAN hybrid mats containing 62% AgNO₃, and the Ag/PPy/PAN fibrous mats prepared from AgNO₃/PAN fibrous mats containing (B) 10, (C) 36, (D) 52, (E) 62 and (F) 69% AgNO₃, respectively.

4032

R. Chen et al. / Materials Letters 62 (2008) 4031-4034

Fig. 2. TEM images of the Ag/PPy/PAN fibrous mats prepared from AgNO₃/PAN mats in which the content of AgNO₃ is (A) 10, (B) 36, (C) 52, (D) 62 and (E) 69% (inserted image: SEM image of the cross section), respectively.

dispersed in the matrix of PAN and PPy (Fig. 2D). Finally, some particles congregate into larger clusters (> 300nm) (Fig. 2E), in which the AgNO₃/PAN fibers contain 69% AgNO₃.

The XRD patterns are shown in Fig. 3. The broad diffraction peak at ~ 17.3° is related to the orthorhombic PAN (110) reflection [19], and the other diffraction peaks at about 38.2°, 44.4°, 64.6° and 77.5° are related to (111), (200), (220) and (311) planes of the standard cubic phases of silver, respectively. There is only Ag (111) diffraction peak observed in the Ag/PPy/PAN composite prepared from AgNO₃/PAN fibers containing 10% AgNO₃ (Fig. 3b) because of the small size and low content of Ag particles. This result is consistent with the results of the TEM and SEM.

The conductivities of Ag/PPy/PAN composite fibrous mats are measured and the results are shown in Fig. 4A. The optimum conductivity is found to be $\sim 1.3 \times 10^{-3}$ S cm⁻¹ for Ag/PPy/PAN composite fibrous mats prepared form AgNO₃/PAN containing 52% AgNO₃. It is noticeable that the optimum conductivity for Ag/PPy/PAN composite

Fig. 3. The XRD patterns of (a) pure PAN and the Ag/PPy/PAN composite fibrous mats prepared from AgNO₃/PAN hybrid fibers containing (b) 10%, and (c) 52% AgNO₃.

fibrous mats is about 1000 times of that for Ag/PPy core-shell composite $(10^{-6} \text{ S cm}^{-1})$ reported by previous literature [20]. The reason may contribute to the organic reaction medium or the fibrous structure of composite in our paper.

No characteristic Raman bands of PPy are observed in the sample prepared from AgNO₃/PAN fibers containing 10% AgNO₃ because of the low content of PPy (Fig. 4B–a). With the increase of the content of AgNO₃, the bands corresponding to PPy appear, according to the literature [21–24], the band at ~1622 and 1592 cm⁻¹ is attributed to the C=C bond stretching of the oxidized species and neutral species of PPy, respectively. The band at 1416, 1326 and 1260 cm⁻¹ is corresponding to the antisymmetric C–H stretching, the ring stretching and the antisymmetric C–H in plane bending of PPy, respectively. The double band at approximate to 1092 cm⁻¹ and 1048 cm⁻¹ are assigned to the C–H in-plane deformation and the band at about 932 cm⁻¹ is assigned to ring deformation 52% AgNO₃ exhibit stronger Raman scattering (Fig. 4B–c) than other samples. Therefore, it is reasonable to conclude that Ag/PPy/PAN composite fibrous mats have been successfully fabricated.

4. Conclusions

The Ag/PPy/PAN composite fibrous mats have been fabricated. The Ag/PPy core-shell particles structure is observed clearly in the optimum Ag/PPy/PAN composite fibers prepared from AgNO₃/PAN (52%AgNO₃), which exhibits higher conductivity and stronger Raman scattering intensity than other composite fibers. The size of the Ag particles and the conductivities of the composite fibrous mats are influenced by the content of AgNO₃ in the AgNO₃/PAN fibers. These composite fibrous materials may be applied in microwave shielding or sensor fields.

Acknowledgments

The authors thank the National Natural Science Foundation of China (20604014), Natural Science Foundation (2007021008) and

R. Chen et al. / Materials Letters 62 (2008) 4031-4034

Fig. 4. (A) The plot of the conductivities (logarithmic scale) of Ag/PPy/PAN fibrous mats versus the content of AgNO₃ in AgNO₃/PAN; (B) The Raman spectra of the Ag/PPy/PAN fibrous mats prepared from AgNO₃/PAN fibers containing (a) 10, (b) 36, (c) 52, (d) 62 and (e) 69% AgNO₃, respectively.

TYAL project of Shanxi province, and School Foundation of Shanxi University.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.matlet.2008.05.054.

References

- [1] Feng, Chew SY, Guo ZP, Wang JZ, Liu HK. J Power Sources 2007;174:1095-9.
- [2] Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M. Adv Funct Mater 2007:17:3083-7.
- Hakansson E, Amiet A, Kaynak A. Synth Met 2006;156:917-25.
- [4] Han GY, Shi GQ. Thin Solid Films 2007;515:6986–91.
- [5] Han, Shi GQ. J Electroanal Chem 2004;569:169-74.
- [6] Han GY, Shi GQ. Sens Actuators B Chem 2004;99:525-31.
- [7] Jing SY, Xing SX, Yu LX, Zhao C. Mater Lett 2007;61:4528-30.
- [8] Liu YC, Chuang TC. J Phys Chem B 2003;107:12383-6.

- [9] Wang SB, Shi GQ. Mater Chem Phys 2007;102:255-9.
- [10] Xing SX, Zhao GK. Mater Lett 2007;61:2040-4.
- [11] Huang ZM, Zhang YZ, Kotaki M, Ramkrishna S. Compos Sci Technol 2003;63:2223-53.
- [12] Li D, Xia YN. Adv Mater 2004;16:1151-70.
- [13] Lee HK, Jeong EH, Beak CK, Youk JH. Mater Lett 2005;59:2977-80.
- [14] Li ZY, Huang HM, Shang TC, Yang F, Zheng W, Wang C, et al. Nanotechnology 2006;17:917-20.

- [15] Han GY, Guo B, Zhang LW, Yang BS. Adv Mater 2006;18:1709–12.
 [16] Patel AC, Li SX, Yuan JM, Wei Y. Nano Lett 2006;6:1042–6.
 [17] Pinto, Johnson AT, MacDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, et al. Appl Phys Lett 2003;83:4244-6. [18] Han GY, Shi GQ. J Appl Polym Sci 2007;103:1490-4.
- Zhang ZP, Han MY. J Mater Chem 2003;13:641-3. [19]
- [20] Fujii S, Aichi A, Akamatsu K, Nawafune H, Nakamura Y. J Mater Chem 2007;17:3777–9.
- Liu, Hwang BJ, Jian WJ, Santhanam R. Thin Solid Films 2000;374:85-91. [21]
- Han GY, Shi GQ, Yuan JY, Chen FE. J Mater Sci 2004;39:4451–7. [22]
- [23] Duchet J, Legras R, Demoustier-champagne S. Synth Met 1998;98:113-22.
- [24] Han GY, Shi GQ. Sens Actuators B Chem 2006;113:259-64.