Gold Cages

Doping Golden Buckyballs: Cu@Au_{16}^{-} and Cu@Au_{17}^{-} Cluster Anions**

Lei-Ming Wang, Satya Bulusu, Hua-Jin Zhai, Xiao-Cheng Zeng,* and Lai-Sheng Wang*

The discovery of the unique catalytic effects of gold nanoparticles on oxide substrates[1] has stimulated a flurry of research into the structures and properties of free gold nanoclusters, which may hold the key to elucidating the catalytic mechanisms of supported gold clusters. One of the most remarkable results has been the discovery of planar gold cluster anions (Aun−) of up to twelve gold atoms and the 2D to 3D transition for clusters with n larger than 12.[2–4] Among larger gold clusters, Au\textsubscript{32} has been found to be a perfect tetrahedron.[3] A more recent study of the structures of Au\textsubscript{n−} cluster anions in the medium size range (n = 15–19)[9] has shown that clusters with n = 16–18 possess unprecedented empty cage structures. In particular, the Au\textsubscript{16−} cluster anion has an interesting tetrahedral structure with an inner diameter of about 5.5 Å and can be compared to the fullerenes (buckyballs). Although Au\textsubscript{16} was first suggested to be a “24-carat golden fullerene”,[7,8] subsequent studies showed that the Au\textsubscript{15−} ion is in fact a low-symmetry compact 3D structure.[9] Other larger gold cage clusters have also been proposed computationally,[10,11] but none has been observed or is expected to be the global minimum. The cage structures of the cluster anions Au\textsubscript{16−} and Au\textsubscript{17−} have recently been confirmed by electron diffraction[12] and thus they are the first experimentally confirmed and the smallest possible gold cages. The large empty space inside these cage clusters immediately suggested that they can be doped with a foreign atom to produce a new class of endohedral gold cages[6] analogous to endohedral fullerenes.[13,14]

A gold cage containing a central atom was first predicted for a series of icosahedral clusters M@Au\textsubscript{12} (M = W, Ta, Re8−) based on the 18-electron rule[15–17] and was subsequently confirmed experimentally.[18,19] However, since Au\textsubscript{12} itself does not possess a cage structure, the dopant atom with the appropriate electron count must play an essential role in holding the cage together. Bimetallic gold clusters have been studied experimentally,[20–24] as they offer new opportunities to fine-tune the electronic and structural properties of gold nanoclusters. Following the discovery of the hollow gold cages,[6] two recent theoretical studies have appeared concerning doping them with a foreign atom.[25,26] Since the parent Au\textsubscript{16−} and Au\textsubscript{17−} cluster anions are empty cages, many different types of atoms could be used as dopants to form new endohedral gold clusters.[6] Herein we report the first observation and characterization of Au\textsubscript{16−} and Au\textsubscript{17−} doped with a Cu atom (Cu@Au\textsubscript{16−} and Cu@Au\textsubscript{17−}) by both photoelectron spectroscopy (PES) and density functional theory (DFT) calculations.

The experiment was performed in a magnetic-bottle PES apparatus equipped with a laser vaporization supersonic cluster source.[27] Figure 1 shows the spectra of the ions CuAu\textsubscript{16−} and CuAu\textsubscript{17−}, compared to Au\textsubscript{16−} and Au\textsubscript{17−}; see text for details.

CuAu\textsubscript{16−} and CuAu\textsubscript{17−} along with those of the parent gold clusters. [6] Let us first focus on the CuAu\textsubscript{16−} ion (Figure 1b), whose PE spectrum is remarkably similar to that of its parent gold cluster Au\textsubscript{16} (Figure 1a). The first three features (X, A, and B) and the gap between B and C (Figure 1) are all very similar in the PE spectra of both systems, except that the intensity of the ground state band (X) is greater for the doped cluster and its electron-binding energies are slightly higher (Table 1). The similarity between the spectra of these two

[**] the experimental work done at Washington was supported by the U.S. NSF (CHE-0349426) and the John Simon Guggenheim Foundation and performed at the EMSL, a national scientific user facility sponsored by the U.S. DOE’s Office of Biological and Environmental Research and located at PNNL, operated for DOE by Battelle. The theoretical work done at Nebraska was supported by the DOE Office of Basic Energy Sciences (DE-FC02-04ER46164), the NSF (CHE-0427746, CHE-0314577, DMI-0210850), the John Simon Guggenheim Foundation, and the University of Nebraska-Lincoln Research Computing Facility.

[1] L.-M. Wang, Dr. H.-J. Zhai, Prof. Dr. L.-S. Wang

Department of Physics, Washington State University
2710 University Drive, Richland, WA 99354 (USA) and
Chemical & Materials Sciences Division
Pacific Northwest National Laboratory
MS K8-88, P.O. Box 999, Richland, WA 99352 (USA)
Fax: (+1) 509-376-6066
E-mail: ls.wang@pnl.gov

S. Bulusu, Prof. Dr. X.-C. Zeng

Department of Chemistry and Center for Materials and Nanoscience
University of Nebraska, Lincoln, NE 68588 (USA)
Fax: (+1) 402-472-9402
E-mail: xczeng@phase2.unl.edu

DOI: 10.1002/anie.200700060
species suggests that the Cu doping does not alter the geometric and electronic structures of the Au\textsubscript{16} cluster anion significantly, which is only possible if Cu is trapped inside the Au\textsubscript{16} cage. The Au\textsubscript{16} cluster anion itself is unique and its PE spectrum does not exhibit an energy gap similar to that for other even-sized gold clusters in this size range.\[^{[6,28]}\]

The high electron-binding energies and the lack of an energy gap suggest that the neutral Au\textsubscript{16} cluster is open-shell and probably has two unpaired electrons (a triplet state).\[^{[6]}\] This is consistent with the description of Cu@Au\textsubscript{16} as Cu2+ in the Au\textsubscript{16} cage, with little contribution from the central Cu atom; this is consistent with the description of Cu@Au\textsubscript{16} and Cu@Au\textsubscript{17} as Cu2+ in the Au\textsubscript{16} and Au\textsubscript{17} cages, respectively.\[^{[30]}\] The charge-transfer interactions between the cage and its dopant are also reminiscent of endohedral fullerenes\[^{[11,14]}\] and are consistent with the strongly ionic character of the diatomic molecule Cu\textsubscript{2+}.\[^{[31]}\]

Doping gold clusters could be a powerful way to tune their chemical and physical properties,\[^{[24,32,33]}\] and the results reported herein suggest that a new class of endohedral gold cages is indeed viable. In these examples the cage structures of Au\textsubscript{16} and Au\textsubscript{17} cluster anions are maintained simply by changing the dopants, which is reminiscent of the behavior of Cu@Au\textsubscript{16} cluster anions with Cu in the center has T_d symmetry with a triply degenerate HOMO, which gives rise to the first band in the simulated PE spectrum (Figure 2b). In the structure in which the Cu atom is displaced from the center, the Cu@Au\textsubscript{16} cluster anion has Cs\textsubscript{2} symmetry and the triply degenerate HOMO is split, which gives rise to the doublet peaks (X and A) in the simulated PE spectrum (Figure 2c) and is in perfect agreement with the experimental spectrum (Figure 1b). The simulated PE spectra of both the Cs\textsubscript{2} and Cs\textsubscript{3} structures of the Cu@Au\textsubscript{17} cluster anion are similar to each other and are both in good agreement with the experimental spectra, thereby suggesting that the Cu atom in the center of the Au\textsubscript{17} anion cage might be somewhat fluxional.\[^{[29]}\]

The calculated vertical detachment energies (VDEs) for the Cu@Au\textsubscript{16} and Cu@Au\textsubscript{17} cluster anions are also in good agreement with the experimental values (Table 1). Overall, the excellent agreement between theory and experiment confirms the endohedral structures of these Cu-doped gold cages unequivocally. It is important to note, however, that the Au\textsubscript{16} and Au\textsubscript{17} cages are not distorted significantly from those of the parent clusters even in the low-symmetry structures.
endohedral fullerenes\cite{13,14}. It would be particularly interesting to dope transition-metal atoms inside these gold cages to create magnetic gold clusters as these may exhibit new, physical, chemical, and catalytic properties that are distinct from the pure gold clusters.

Experimental Section

Photoelectron spectroscopy: The CuAu\(_{16}\) and CuAu\(_{17}\) cluster anions were produced by laser vaporization of an Au/Cu composite disk target containing about 7% Cu. Negatively charged species in order to achieve clean mass-selection for the Au\(_{16}\) target was carefully adjusted to minimize multiple Cu doping in the Au\(_{16}\) clusters and provide the Au\(_{16}\) series as the dominant doped species in order to achieve clean mass-selection for the CuAu\(_{16}\) and CuAu\(_{17}\) anions. Photoelectron time-of-flight spectra were calibrated against the known spectra of Au\(^-\) and converted into binding energy spectra by subtracting the kinetic energy spectra from the photon energy. The resolution of the magnetic-bottle PE spectrometer was \(\Delta E/E \approx 2.5\%\) (i.e., about 25 meV for 1-eV electrons).

Calculations: We performed global-minimum searches using the basin-hopping method\cite{30} for the anionic gold clusters Au\(_{16}^\text{-}\) (\(n = 16, 17\)) doped with a Cu atom. We combined the global search method directly with DFT calculations\cite{23,35,34}. After each accepted Monte-Carlo move a geometry minimization was carried out using a DFT method with a gradient-corrected functional, namely the Perdew–Burke–Enzerhof (PBE) exchange-correlation functional\cite{34}, implemented in the DMol\(^3\) code.\cite{37} Top low-lying isomers were collected and reoptimized using the PBE-PBE functional and the LANL2DZ basis set. The first VDE was calculated by the energy difference between the anion and neutral clusters at the anion geometry. VDEs to higher detachment channels were computed by adding the occupied orbital energies relative to the HOMO to the first VDE. The simulated PE spectra were obtained by fitting the computed VDEs with Gaussian functions with a width of 0.04 eV. The isomer structures that gave the best match between simulated and measured spectra were identified and are shown in Figure 2.

Note that the \(T_d\) isomer of the Cu@Au\(_{16}\) ion shown in Figure 2b has four imaginary frequencies (owing to Jahn–Teller distortion), whereas the \(C_i\) isomer of the Cu@Au\(_{17}\) ion shown in Figure 2c has no imaginary frequencies and represents a global minimum.

Received: January 5, 2007
Published online: March 12, 2007

Keywords: cluster - copper - electronic structures - gold - photoelectron spectroscopy

\[\text{Keywords:}\text{ cluster - copper - electronic structures - gold - photoelectron spectroscopy}\]
The C_1 structure is only 0.034 eV more stable than the C_2 structure and they are separated by an energy barrier of 0.2 eV. The Mulliken charge analysis and natural population analyses show that the Cu atoms in Cu@Au$_{16}$ (C_1) and Cu@Au$_{17}$ (C_2) carry a positive partial charge.