$\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}(\mathrm{M}=\mathrm{Ag}, \mathrm{Au}, \mathrm{Pd}, \mathrm{Pt} ; \mathbf{X}=\mathrm{Si}, \mathrm{Ge}, \mathrm{P}, \mathrm{S}):$ Hydrometal Pentagons with $D_{5 h}$ Planar Pentacoordinate Nonmetal Centers

Si-Dian Li*
Institute of Molecular Science, Shanxi University, Taiyuan 030001, Shanxi, People's Republic of China, and Institute of Materials Science and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, Shanxi, People's Republic of China
Chang-Qing Miao
Institute of Materials Sciences and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, Shanxi, People's Republic of China

Received: June 6, 2005; In Final Form: July 3, 2005

Abstract

A density functional theory investigation has been presented in this work on $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ hydrometal pentagons $(\mathrm{M}=\mathrm{Ag}, \mathrm{Au}, \mathrm{Pd}, \mathrm{P})$ with $D_{5 h}$ planar pentacoordinate nonmetal centers $(\mathrm{X}=\mathrm{Si}, \mathrm{Ge}, \mathrm{P}, \mathrm{S})$. The introduction of the nonmetal centers X introduces p aromaticity to $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes. These novel planar complexes are favored in thermodynamics and confirmed to be aromatic in nature. They may be expanded to one, two, or even three dimensions with multiple planar pentacoordinate silicon and other nonmetal centers.

1. Introduction

The structures and properties of planar tetra-, ${ }^{1-7}$ penta-, ${ }^{8,9}$ and hexacoordinate ${ }^{10-12}$ carbons have aroused great interest among chemists in the past thirty years, while much less attention has been paid to their silicon analogues beyond the traditional tetrahedron concept. Planar tetracoordinate (PT) silicon was first studied about twenty years ago ${ }^{13}$ and recently observed in $C_{2 v} \mathrm{MAl}_{4}$ and $\mathrm{MAl}_{4}^{-}(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}) .{ }^{14}$ Utilizing the frameworks of the polygonal hydrocoppers $\left(\mathrm{Cu}_{n} \mathrm{H}_{n}\right)$ proposed by Tsipis et al., ${ }^{15}$ our group recently presented the possibility of hosting PT carbon in squared $\mathrm{M}_{4} \mathrm{H}_{4} \mathrm{C}(\mathrm{M}=\mathrm{Cu}, \mathrm{Ni}),{ }^{5}$ planar pentacoordinate (PP) carbon in pentagonal $\mathrm{Cu}_{5} \mathrm{H}_{5} \mathrm{X}(\mathrm{X}=\mathrm{B}, \mathrm{C}$, $\mathrm{N}, \mathrm{O}),{ }^{9}$ and planar hexacoordinate (PH) silicon in hexagonal $\mathrm{Cu}_{6} \mathrm{H}_{6} \mathrm{Si}^{16}$ at the density functional theory (DFT) level. Inspired by the novel design of planar pentacoordinate carbons, ${ }^{8}$ we have also proposed a universal structural pattern at DFT to incorporate planar hypercoordinate silicons in the $C_{2 v} \mathrm{~B}_{n} \mathrm{E}_{2} \mathrm{Si}$ series ($n=$ $2-5 ; \mathrm{E}=\mathrm{Si}, \mathrm{CH}, \mathrm{BH})$ with Si as periphery atoms in these molecular fans. ${ }^{17}$ In this report, we continue the research by exploring the possibility at DFT of hosting $D_{5 h} \mathrm{PP}$ silicon and other nonmetals at the centers of pentagonal hydrometals $\mathrm{M}_{5} \mathrm{H}_{5}{ }^{15,18}$ to form $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes with $\mathrm{M}=\mathrm{Ag}, \mathrm{Au}, \mathrm{Pd}$, Pt and $\mathrm{X}=\mathrm{Si}, \mathrm{Ge}, \mathrm{P}, \mathrm{S}$. As heavy transition metal elements in group 11 and group 10 in the periodic table, Ag and Au and Pd and Pt are isolobal in valence electron configurations with Cu and Ni , respectively, but they are systematically bigger in atomic size. $\mathrm{Pt}_{5} \mathrm{H}_{5}{ }^{-}$and $\mathrm{Pd}_{5} \mathrm{H}_{5}{ }^{-}$pentagons are found to provide the right cavities to match $D_{5 h} \mathrm{PP} \mathrm{Si}$ and Ge centers both geometrically and electronically. To the best of our knowledge, there has been no investigation reported to date on PP Si or Ge at the center of a perfect pentagon with the high symmetry of $D_{5 h}$. The present work and our previous investigations combined provide strong DFT evidence that polygonal hydro-transitionmetals $\mathrm{M}_{n} \mathrm{H}_{n}(\mathrm{M}=$ group 10 and 11 transition metals; $n=4-6)$ may serve as effective ligands to host planar coordinate carbon,
silicon, and other nonmetal atoms at their geometry centers with the high symmetry of $D_{n h}$.

2. Computational Procedure

Initial structures were optimized using the Gaussian 03 program ${ }^{19}$ at the hybrid DFT functional level of B3LYP with the bases of Lanl2dz for transition metals (which contains a Los Alamos effective core potential) and $6-311+G(d)$ for nonmetal atoms. Imaginary vibrational frequencies were checked at the same theoretical level. To assess the aromaticity of the systems, the nucleus independent chemical shifts (NICS) ${ }^{20,21}$ were calculated by using the gauge-independent atomic orbital (GIAO) procedure at B3LYP with the same basis. The vertical one-electron detachment energies of anions were calculated employing the outer valence Green's function (OVGF) ${ }^{22}$ to facilitate future photoelectron spectroscopic measurements. Figure 1 depicts the optimized structures (upper) of the $\mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{X}$ series ($\mathrm{X}=\mathrm{Si}, \mathrm{P}, \mathrm{S}$) and their highest occupied molecular orbital (HOMO) pictures (lower) and Figure 2 shows the optimum geometries of $\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{P}^{+}, \mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Ge}^{-}$, and $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ and their lithium salts $\mathrm{LiM}_{5} \mathrm{H}_{5} \mathrm{Si}$. Four typical delocalized out-of-plane molecular orbitals (MOs) of $D_{5 h} \mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$are shown in Figure 3. The important DFT bond lengths, lowest vibrational frequencies, Wiberg bond indices of the X centers, NICS(1) values calculated with ghost atoms located $1.0 \AA$ above the M_{5} planes (the structural centers have been occupied by X atoms), and the low-lying one-electron vertical detachment energies of anions are summarized in Table 1. The reversed values of the HOMO energies listed in Table 1 approximately represent the ionization potentials (IPs) of corresponding complexes in Koopmans' theorem. Their HOMO-LUMO energy gaps are also tabulated in Table 1.

3. Results and Discusions

As shown in Figure 1, Figure 2, and Table 1, $D_{5 h} \mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{P}^{+}$, $\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{P}^{+}, \mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{~S}^{2+}$, and $\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{~S}^{2+}$ are all true minima on their

Figure 1. Optimized structures (upper) and corresponding HOMO pictures (lower) of $\mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{X}$ neutral and cations $(\mathrm{X}=\mathrm{Si}, \mathrm{P}, \mathrm{S})$.

Figure 2. Optimum geometries of $\left[\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{P}\right]^{+}$, $\left[\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Ge}\right]^{-}$, and $\left[\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}\right.$anions $(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ and their lithium complexes $\mathrm{Li}\left[\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{Si}\right]$.

Figure 3. Four typical delocalized out-of-plane MOs of $D_{5 h} \mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$.
potential energy surfaces without imaginary vibrational frequencies. But a $D_{5 h} \mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{Si}$ turned out to be a transition state with one imaginary frequency at $95 \mathrm{~cm}^{-1}$ ($\mathrm{an} \mathrm{a}_{2}{ }^{\prime \prime}$ vibrational mode with the Si center vibriating up and down along the 5 -fold molecular axis perpendicular to the Ag_{5} plane) and a $D_{5 h} \mathrm{Au}_{5} \mathrm{H}_{5}-$ Si is a third-order stationary point with three imaginary frequencies at $341 \mathrm{i}, 320 \mathrm{i}$, and $116 \mathrm{i} \mathrm{cm}^{-1}$. However, the optimizations of both $C_{5 v} \mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{Si}$ and $C_{5 v} \mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{Si}$ had convergence problems at the DFT level used in this work. Totally removing the symmetry constrains during structural optimization, we obtained two C_{1} pentagonal pyramid structures for $\mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{Si}$ and $\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{Si}$, which possess the approximate symmetry of $C_{5 v}$ (see Figure 1) with Si atoms located about $1.2 \AA$ above the transition metal planes. Orbital analyses indicate
that a $D_{5 h} \mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{P}^{+}$possesses 2π electrons in its HOMO ($\mathrm{a}_{2}{ }^{\prime \prime}$) and therefore conforms with the $(4 n+2) \pi$ electron counting rule, while the approximate $C_{5 v} \quad \mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{Si}$ has a distorted π HOMO in its ground-sate structure (see Figure 1). Although the HOMO of $D_{5 h} \mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{~S}^{2+}$ is an in-plane delocalized bond ($\mathrm{a}_{1}{ }^{\prime}$) composed mainly of the Ag 4 d atomic orbitals (AOs) and H 1s AOs, its HOMO-1 ($\mathrm{a}_{2}{ }^{\prime \prime}$) turns out to be a delocalized π MO. The π MOs of these complexes are mainly composed of the contributions from the $3 p_{z} \mathrm{AOs}$ of the nonmetal centers Si , P , and S , respectively. A similar situation happens to $\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{Si}$, $\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{P}^{+}$, and $\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{~S}^{2+}$. Obviously, both hydrosilver $\mathrm{Ag}_{5} \mathrm{H}_{5}$ and hydrogold $\mathrm{Au}_{5} \mathrm{H}_{5}$ are unsuitable to host the much concerned $D_{5 h}$ PP Si at their geometrical centers. This situation is similar to that of the $\mathrm{Cu}_{4} \mathrm{H}_{4} \mathrm{X}$ series $(\mathrm{X}=\mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}),{ }^{5}$ in which

TABLE 1: Optimized Important Bond Lengths, r_{X-M} and r_{M-M}, the Lowest Vibrational Frequencies, $V_{\text {min }}$, Total Wiberg Bond Indices of the X Centers ($\mathbf{W B I}_{x}$), Calculated NICS(1) Values, HOMO Energies, and HOMO-LUMO Energy Gaps (Gap) of the Complexes Studied in This Work and the Low-Lying One-eLectron Vertical Detachment Energies (VDEs) of $\mathbf{M}_{5} \mathrm{H}_{5} \mathbf{X}^{-}$Anions with Pole Strengths Greater than 0.90 at DFT

	symmetry	$r_{\mathrm{X}-\mathrm{M}}(\AA)$	$r_{\text {M }-\mathrm{M}}(\AA)$	$V_{\text {min }}\left(\mathrm{cm}^{-1}\right)$	$\mathrm{WBI}_{\mathrm{X}}$	NICS(1) (ppm)	HOMO (eV)	gap (eV)	VDEs (eV)
$\mathrm{Ag}_{5} \mathrm{H}_{5}$	$\sim D_{5 h}$		2.87	30		-0.6	-7.56	5.76	
$\mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{Si}$	$\sim C_{5 v}$	2.71	2.82	40	2.1	-11.0	-4.63	1.33	
$\mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{P}^{+}$	$D_{5 h}$	2.58	3.03	45	2.2	-6.9	-9.99	2.09	
$\mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{~S}^{2+}$	$D_{5 h}$	2.61	3.07	48	1.77	-15.6	-15.7	2.43	
$\mathrm{Au}_{5} \mathrm{H}_{5}$	$\sim D_{5 h}$		2.77	38		-1.4	-8.05	5.48	
$\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{Si}$	$\sim C_{5 v}$	2.68	2.75	11	2.3	-6.8	-4.68	1.41	
$\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{P}^{+}$	$D_{5 h}$	2.52	2.96	38	2.31	-11.1	-9.89	2.27	
$\mathrm{Au}_{5} \mathrm{H}_{5} \mathrm{~S}^{2+}$	$D_{5 h}$	2.54	2.98	46	2.0	-15.5	-16.2	3.12	
$\mathrm{Pd}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$	$\sim D_{5 h}$	2.36	2.77	10	3.46	-0.3	-2.14	2.46	4.88($\left.\mathrm{e}_{2}{ }^{\prime}\right), 5.49\left(\mathrm{e}_{1}{ }^{\prime}\right)$
$\mathrm{Pd}_{5} \mathrm{H}_{5} \mathrm{Ge}^{-}$	$\sim D_{5 h}$	2.42	2.84	21	3.34	-2.3	-2.13	2.33	$4.80\left(\mathrm{e}_{2}{ }^{\prime}\right), 5.47\left(\mathrm{e}_{1}{ }^{\prime}\right)$
$\mathrm{Pt}_{5} \mathrm{H}_{5}{ }^{-}$	$D_{5 h}$		2.62	17		+107	-2.32	1.16	
$\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$	$D_{5 h}$	2.35	2.77	38	3.69	-6.2	-2.36	2.34	5.16($\left.\mathrm{e}_{2}{ }^{\prime}\right), 5.61\left(\mathrm{a}_{2}{ }^{\prime}\right), 5.93\left(\mathrm{e}_{1}{ }^{\prime}\right)$
$\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Ge}^{-}$	$D_{5 h}$	2.40	2.83	40	3.58	-8.2	-2.45	2.26	5.10($\left.\mathrm{e}_{2}{ }^{\prime}\right), 5.95\left(\mathrm{e}_{1}{ }^{\prime}\right)$
$\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{P}$	C_{s}	2.33	2.74	9	3.75	-11.6	-6.80	2.03	
$\mathrm{Li}\left[\mathrm{Pd}_{5} \mathrm{H}_{5} \mathrm{Si}\right]$	$\sim C_{s}$	2.32	2.77	11	3.48	+1.4	-5.96	2.58	
		2.44	2.80						
$\mathrm{Li}\left[\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}\right]$	$\sim C_{s}$	2.31	2.75	36	3.75	-8.8	-6.13	2.45	
		2.42	2.78						

$\mathrm{Cu}_{4} \mathrm{H}_{4} \mathrm{~B}^{-}$and $\mathrm{Cu}_{4} \mathrm{H}_{4} \mathrm{C}$ prefer $C_{4 v}$ pyramids to $D_{4 h}$ squares, while $\mathrm{Cu}_{4} \mathrm{H}_{4} \mathrm{~N}^{+}$and $\mathrm{Cu}_{4} \mathrm{H}_{4} \mathrm{O}^{2+}$ take planar squared structures with the high symmetry of $D_{4 h}$.

Extensive searches at DFT indicate that the long-sought $D_{5 h}$ planar pentacoordinate silicon can be stabilized at the centers of both $D_{5 h} \mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$and $C_{1} \mathrm{Pd}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$(which has the actual symmetry of $D_{5 h}$ at DFT) as shown in Figure 2, with the bond lengths of $r_{\mathrm{Si}-\mathrm{M}} \approx 2.35$ and $r_{\mathrm{M}-\mathrm{M}} \approx 2.77 \AA$. These pentagonal complexes contain $D_{5 h}$ Si centers with five transition-metal ligands evenly distributed around them. Similarly, $D_{5 h} \mathrm{Ge}$ centers can be stabilized in perfect pentagons $\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Ge}^{-}$and $\mathrm{Pd}_{5} \mathrm{H}_{5} \mathrm{Ge}^{-}$with the $\mathrm{Ge}-\mathrm{M}$ bond lengths close to $2.40 \AA$. Introducing an alkaline counterion Li^{+}into $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}(\mathrm{M}=\mathrm{Pd}$ and Pt), we obtained two C_{1} structures with the approximate symmetry of C_{s} for $\mathrm{Li}^{2}\left[\mathrm{Pd}_{5} \mathrm{H}_{5} \mathrm{Si}\right]$ and $\mathrm{Li}\left[\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}\right]$ (see Figure 2), in which the planar $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$structural units and PP Si centers are well maintained. The calculated natural charges of Li atoms in these complexes are found to be close to $+0.90 \mid \mathrm{e}$ | and these alkaline cations form ionic bonds with the planar $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}^{-}$structural cores. As indicated by the total Wiberg bond indices ranging from $\mathrm{WBI}_{\mathrm{X}}=3.34$ to 3.75 (see Table 1), the $D_{5 h} \mathrm{Si}, \mathrm{Ge}$, and P centers in these planar $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes $(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ follow the octet rule in interacting with the transition metal ligands.

Concerning the stability of $D_{5 h} \mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{X}^{-}(\mathrm{X}=\mathrm{Si}, \mathrm{Ge})$ complexes, the following reaction

$$
\mathrm{Pt}_{5} \mathrm{H}_{5}^{-}\left(D_{5 h}\right)+\mathrm{X}=\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{X}^{-}\left(D_{5 h}\right)
$$

has the calculated DFT energy changes of $\Delta E=-810.8$, -935.9 , enthalpy changes of $\Delta H=-814.0,-940.6$, and free Gibbs energy changes of $\Delta G=-767.6,-894.1 \mathrm{~kJ} / \mathrm{mol}$ for X $=\mathrm{Ge}$ and Si , respectively. Obviously, pentagonal $\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{X}^{-}$ complexes with $D_{5 h} \mathrm{Si}$ and Ge centers are strongly favored in thermodynamics with respect to a $\mathrm{Pt}_{5} \mathrm{H}_{5}^{-}$anion and a free X atom.

The negative NICS(1) values tabulated in Table 1 indicate that the $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes studied in this work are aromatic in nature, except for $\mathrm{Li}\left[\mathrm{Pd}_{5} \mathrm{H}_{5} \mathrm{Si}\right]$, which has a slightly positive NICS value (+1.4 ppm), partially explaining the stability of these nonmetal-atom-centered planar molecules. These NICS(1) values are comparable with the corresponding values of benzene (-10.1 ppm at the same theoretical level). It is interesting to notice that $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes have higher negative

NICS values than the corresponding hydrometals $\mathrm{M}_{5} \mathrm{H}_{5}$ in all cases for the reason that the introduction of X centers introduces p aromaticity to the $\mathrm{M}_{n} \mathrm{H}_{n} \mathrm{X}$ complexes. For instance, as clearly indicated in Figure 1, $\mathrm{Ag}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes $(\mathrm{X}=\mathrm{Si}, \mathrm{P}, \mathrm{S})$ possess 2π electrons in their HOMO or HOMO- 1 which are mainly composed of the contribution of the $3 \mathrm{p}_{z}$ orbitals of the nonmetal centers. In the case of $\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$, the π-type HOMO-11 $\left(\mathrm{a}_{2}{ }^{\prime \prime}\right)$ (see Figure 3) mainly reflects the contribution of $\mathrm{Si} 3 \mathrm{p}_{z} \mathrm{AO}$. It should be pointed out that the d aromaticity existing in $\mathrm{M}_{4} \mathrm{H}_{4}$ and $\mathrm{Li}_{2} \mathrm{M}_{4}$ ${ }^{21}$ should exist in the $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes $(\mathrm{X}=\mathrm{Ag}, \mathrm{Au}, \mathrm{Pd}, \mathrm{Pt})$ studied in this work. In the four typical delocalized out-of-plane MOs of $\mathrm{Pt}_{5} \mathrm{H}_{5} \mathrm{Si}^{-}$shown in Figure 3, HOMO-5 and HOMO-6 consist purely of Pt $5 \mathrm{~d}_{z^{2}}$ contributions, while HOMO-8, which is dominated by the in-phase overlap of Pt $5 \mathrm{~d}_{z^{2}} \mathrm{AOs}$, also includes the contribution of the Si 3 s AO . Two other degenerate antibonding MOs (HOMO-1 ($\mathrm{e}_{2}{ }^{\prime}$), which are not shown in Figure 3) represent the out-of-phase interactions of the five $\mathrm{Pt} 5 \mathrm{~d}_{z^{2}} \mathrm{AOs}$.

4. Summary

In conclusion, we have presented DFT evidence in this work that planar pentacoordinate silicon and other nonmetal centers can be stabilized in perfect pentagonal hydro-transition-metals to form $\mathrm{M}_{5} \mathrm{H}_{5} \mathrm{X}$ complexes $(\mathrm{M}=\mathrm{Ag}, \mathrm{Au}, \mathrm{Pd}, \mathrm{Pt} ; \mathrm{X}=\mathrm{Si}, \mathrm{Ge}$, $P, S)$. These planar complex units are favored in thermodynamics and confirmed to be aromatic in nature. Our $\mathrm{M}_{n} \mathrm{H}_{n} \mathrm{X}$ complex series ${ }^{5,9,16}$ containing $D_{n h} \mathrm{C}$, Si and other $D_{n h}$ nonmetal centers coordinated to n transition metal ligands ($n=4,5,6 ; \mathrm{M}=\mathrm{Cu}$, $\mathrm{Ag}, \mathrm{Au}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}$) may be expanded to one, two, or even three dimensions with multiple nonmetal centers.

References and Notes

(1) Hoffman, R.; Alder, R. W.; Wilcox, C. F., Jr. J. Am. Chem. Soc. 1970, 92, 4992.
(2) Li, X.; Wang, L.-S.; Boldyrev, A. I.; Simons, J. J. Am. Chem. Soc. 1999, 121, 6033.
(3) Wang, L. S.; Boldyrev, A. I.; Li, X.; Simons, J. J. Am. Chem. Soc. 2000, 122, 7681.
(4) Li, X.; Zhang, H.-F.; Wang, L.-S.; Geske, G. D.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2000, 39, 3630.
(5) Li, S.-D.; Ren, G.-M.; Miao, C.-Q.; Jin, Z.-H. Angew. Chem., Int. Ed. 2004, 43, 1371.
(6) Merino, G.; Mendez-Rojas, M. A.; Vela, A. J. Am. Chem. Soc. 2003, 125, 6026.
(7) Merino, G.; Mendez-Rojas, M. A.; Beltran, H. I.; Corminboeuf, C.; Heine, T.; Vela, A. J. Am. Chem. Soc. 2004, 126, 16160.
(8) Wang, Z.-X.; Schleyer, P. v. R. Science 2001, 292, 2465.
(9) Li, S.-D.; Ren, G.-M.; Miao, C.-Q. Eur. J. Inorg. Chem. 2004, 2232.
(10) Exner, K.; Schleyer, P. v. R. Science 2000, 290, 1937.
(11) Wang, Z.-X.; Schleyer, P. v. R. Angew. Chem., Int. Ed. 2002, 41, 4082.
(12) Li, S.-D.; Guo, J.-C.; Miao, C.-Q.; Ren, G.-M. Angew. Chem., Int. Ed. 2005, 44, 2158.
(13) Meyer, H.; Nagorsen, G. Angew. Chem., Int. Ed. Engl. 1979, 18, 551. Wurthwein, E.-U.; Schleyer, P. v. R. Angew. Chem., Int. Ed. Engl. 1979, 18, 553.
(14) Boldyrev, A. I.; Li, X.; Wang, L.-S. Angew. Chem., Int. Ed. 2000, 39, 3307.
(15) Tsipis, A. C.; Tsipis, C. A. J. Am. Chem. Soc. 2003, 125, 1136.
(16) Li, S.-D.; Ren, G.-M.; Miao, C.-Q. Inorg. Chem. 2004, 43, 6331.
(17) Li, S.-D.; Miao, C.-Q.; Guo, J.-C.; Ren, G.-M. J. Am. Chem. Soc. 2004, 126, 16227.
(18) Tsipis, C. A.; Karagiannis, E. E.; Kladou, P. F.; Tsipis, A. C. J. Am. Chem. Soc. 2004, 126, 12916.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;

Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2003.
(20) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317.
(21) Wannere, C. S.; Corminboeuf, C.; Wang, Z.-X.; Wodrich, M. D.; King, R. B.; Schleyer, P. v. R. J. Am. Chem. Soc. 2005, 127, 5701.
(22) Ortiz, J. V. J. Chem. Phys. 1988, 89, 6348. Zakrzewski, V. G.; Ortiz, J. V. Int. J. Quantum Chem. 1995, 53, 583.

