

Structural and electronic properties of Ge n m- and KGe n - Zintl anions (n=3-10;m=2-4) from density functional theory

Si-Dian Li, Qiao-Ling Guo, Xiu-Feng Zhao, Hai-Shun Wu, and Zhi-Hao Jin

Citation: The Journal of Chemical Physics **117**, 606 (2002); doi: 10.1063/1.1482068 View online: http://dx.doi.org/10.1063/1.1482068 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/117/2?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in An all-electron density functional theory study of the structure and properties of the neutral and singly charged M 12 and M 13 clusters: M = Sc–Zn J. Chem. Phys. **138**, 164303 (2013); 10.1063/1.4799917

Stability of small Pd n (n = 1 - 7) clusters on the basis of structural and electronic properties: A density functional approach J. Chem. Phys. **127**, 244306 (2007); 10.1063/1.2806993

Electronic structures and spectroscopic properties of nitrido-osmium(VI) complexes with acetylide ligands [Os N (C C R) 4] – R H , C H 3 , and Ph by density functional theory calculation J. Chem. Phys. **124**, 144309 (2006); 10.1063/1.2189220

Spectroscopic properties of novel aromatic metal clusters: NaM 4 (M = Al,Ga,In) and their cations and anions J. Chem. Phys. **120**, 10501 (2004); 10.1063/1.1738112

Photoelectron spectroscopy of copper cyanide cluster anions: On the possibility of linear and ring structures J. Chem. Phys. **113**, 1725 (2000); 10.1063/1.481974

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 218.26.34.64 On: Sat. 25 Oct 2014 13:32:37

Structural and electronic properties of Ge_n^{m-} and KGe_n^- Zintl anions (n=3-10; m=2-4) from density functional theory

Si-Dian Li

Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, Shanxi, People's Republic of China and School of Materials Science and Engineering, Xian Jiaotong University, Xian 710049, People's Republic of China

Qiao-Ling Guo and Xiu-Feng Zhao

Taiyuan Teachers' College, Taiyuan 030001, Shanxi, People's Republic of China

Hai-Shun Wu

Institute of Materials Chemistry, Shanxi Normal University, Linfen 041000, Shanxi, People's Republic of China

Zhi-Hao Jin

School of Materials Science and Engineering, Xian Jiaotong University, Xian 710049, People's Republic of China

(Received 21 December 2001; accepted 9 April 2002)

Structural optimizations and frequency analyses have been performed on free Ge_n^{m-} and KGe_n^{-} (n=3-10, m=2-4) Zintl anions and ionization potentials and electron affinities calculated for KGe_n using the density functional theory (DFT) of Becke's three-parameter hybrid functional with the Perdew/Wang 91 expression. The DFT results obtained for small clusters (n=3-5) are further checked with both the second-order Møller-Plesset perturbation theory (MP2) and the configuration interaction calculations with all single and double substitutions from the Hartree-Fock reference determinant (CISD). Free Ge_n^{2-} anions are found to share the same geometries as naked Zintl anions observed in solids with a systematical expansion in bond lengths within about 5%. Intensive searches indicate that two isomers, a tricapped trigonal prism (D_{3h}) and a slightly distorted tricapped trigonal prism (C_{2v}) , exist for $\operatorname{Ge}_{9}^{2^{-}}$ and $\operatorname{Ge}_{9}^{3^{-}}$, while *nido*- $\operatorname{Ge}_{9}^{4^{-}}$ clearly favors the monocapped antisquare prism (C_{4v}) structure. HOMO-LUMO energy gaps >2.23 eV are obtained for Ge_n^{m-} series at the DFT level, except Ge_9^{3-} which has a much narrower energy gap of 1.16 eV. The calculated Gibbs free energy change of $Ge_9^{2-} + Ge_9^{4-} = 2$ Ge_9^{3-} conversion reaction involving nonagermanides has the value of $\Delta G^\circ = -2.91 \times 10^5 \text{ J mol}^{-1}$, providing the first quantum chemistry evidence that the geometrically deduced mixed valent couple of Ge_9^{2-} and Ge_9^{4-} in a previous study is thermodynamically unstable compared to two Geg3- anions. The calculated stabilization energies of Ge_n^{2-} , Ge_n^{-} , and Ge_n exhibit similar variation trends, clearly indicating a maximum at n=7, a minimum at n=8, and an obvious recovery at n=9 and 10. The calculated normal vibrational frequencies reproduce the six observed Raman peaks of naked Ge_5^{2-} with an averaged discrepancy of 11 cm⁻¹. Face-capped or edge-capped deltahedral structures are predicted for binary KGe_n anions and KGe_n and K₂Ge_n neutrals. The magic numbers at n=5, 9, and 10 obtained in both stabilization energies and ionization potentials well reproduce the abundance distributions of KGe_n observed in time-of-flight mass spectra. The validity of the Zintl-Klemm-Busmann principle in KGe_n and K_2Ge_n neutrals is supported by the finding that sizable electron transfers from K atoms to Ge_n nuclei occur in these clusters and the Ge_n nuclei approach corresponding structures of free closo-Ge_n²⁻ anions. © 2002 American Institute of Physics. [DOI: 10.1063/1.1482068]

I. INTRODUCTION

The relationship between structures and stabilities of homoatomic $E_n^{m^-}$ and heteroatomic AE_n^- Zintl anions (E = Ge, Sn, Pb, A=K, Na, Cs, n=3-10, and m=1-4) in condensed phases and that in gas phase has received considerable attention in the past two decades.¹⁻⁴ Ge_n-containing Zintl anions, which have the remarkable feature towards formation in solids, in solutions, and in gas phase, are of special interest for both fundamental and technological reasons. To date, the structurally characterized naked $Ge_n^{m^-}$ an-

ions in condensed phases include the distorted trigonal bipyramid $\operatorname{Ge}_{5}^{2^{-}}(\sim D_{3h})$,² distorted tricapped trigonal prism (TTP) $\operatorname{Ge}_{9}^{2^{-}}(\sim D_{3h} \text{ or } \sim C_{2v})$,³ distorted $\operatorname{Ge}_{9}^{3^{-}}(\sim C_{2v} \text{ or } \sim C_{s})$ between the boundaries of TTP and the monocapped antisquare prism (MASP),⁴⁻⁶ slightly distorted MASP $\operatorname{Ge}_{9}^{4^{-}}(\sim C_{4v})$,³ and the distorted bicapped antisquare prism (BASP) $\operatorname{Ge}_{10}^{2^{-}}(\sim D_{4d})$.⁴ Most of these naked $\operatorname{Ge}_{n}^{m^{-}}$ anions exist as $[A([2,2,2]\operatorname{crypt})]^{+}(A=K,\operatorname{Na})$ salts and have the actual site symmetry of C_{1} . In these complexes, 2,2,2-crypt serves as complexing agent to encapsulate the alkali cations

606

and to provide channels big enough to accommodate Ge_n^{m-} anions. Ge_4^2 was first observed in [Na([2,2,2]crypt)]₂Ge₄, but the attempt to determine its precise configuration failed because Ge_4^{2-} anions were found disordered in the crystal.⁷ The only octahedral Ge_6 unit with a D_4 symmetry obtained through another synthesizing route were identified in $[Ge_6{Cr(CO)_5}_6]^{2-.8}$ There have been no experimental observations reported for Ge_7^{2-} and Ge_8^{2-} to date, showing the high instabilities of these two anions. It is interesting to note that Ge₉ anions was proposed to exist as the mixed valent system of Ge_9^{2-} and Ge_9^{4-} in $[K-(2,2,2)-\operatorname{crypt}]_6 \cdot \operatorname{Ge}_9\operatorname{Ge}_9$ \cdot (en)_x (x=2.5).³ This charge assignment based on their geometrical relationship to $\operatorname{Sn}_9^{4-}(C_{4v})$ and $\operatorname{B}_9\operatorname{H}_9^{2-}(D_{3h})$ has been challenged by recent discovery of similar complexes $[K-(2,2,2)-crypt]_6 \cdot Ge_9 Ge_9 \cdot (en)_x$ (x=0.5,1.5), in which the total negative charge of -6 was equally assigned to two well separated paramagnetic Ge₉³⁻ anions with slightly different shapes.⁶ Except for singly charged Ge_n, however, there have been no experimental observations reported in gas phase so far for highly charged Ge_n^{m-} with m ≥ 2 . Singly charged binary anions AGe_n (A=K, Na, and Rb, n=5-13) were recently detected in TOF mass spectrometry by Fassler et al.¹ Magic numbers with high abundance at n = 5, 9, and 10, lower intensities at n = 11 and 13, and trace KGe_8^- were observed in recent TOF mass spectra, but clusters with n=6 and 7 and n=2-4 were completely absent. Applying the Zintl-Klemm-Busmann principle¹⁰ to these mixed anions, in other words, transferring the s electron from the more electropositive alkali metal atoms A to the Ge_n cluster nuclei, the doubly charged Ge_n^{2-} anions result. Metal atom face-capped or edge-capped structures are possible low-energy geometries for these binary anions and the Ge_n nuclei in them are expected to approach the geometries of naked Ge_n^{2-} . Unfortunately, the quantities of these cluster anions detected in gas phase are extremely small, making isolation and spectroscopic studies almost impossible at current stage.

Electronic calculations on germanium clusters have been limited to Ge_n neutrals and singly charged Ge_n^- and Ge_n^+ ions.11-15 They are found to be typical covalent systems following the prolate stack growth pattern of TTP Ge₉ subunits in medium-size range. DFT calculations have indicated that small Ge_n^- anions with 2n+1 skeletal electrons (s.e.) favor the distorted structures of closo-Ge_n²⁻ (s.e. = 2n+2) or nido- Ge_n^{4-} (s.e. = 2*n*+4), i.e., a trigonal bipyramid for Ge_5^{-} (D_{3h}) , a square bipyramid for $\operatorname{Ge}_6^-(D_{4h})$, a pentagonal bipyramid for $\operatorname{Ge}_7^-(D_{5h})$, a distorted face-capped pentagonal bipyramid for Ge_8^- (C_1 or $\sim Cs$), a distorted MASP for $\operatorname{Ge}_9^ (C_1 \text{ or } \sim C_{4v})$, and a slightly distorted BASP for Ge_{10}^- (C_1 or $\sim C_{4v}$).¹³ For highly charged Ge_n^{m-} with $m \ge 2$, quantum chemistry study has been limited to semiempirical extended Huckel molecular orbital (EHMO) calculations on Ge_9^{m-1} (m=2,3,4) and $\operatorname{Ge}_{10}^{2-}$.⁴

Having briefly reviewed the research works already performed on Ge_n -related clusters above, we think a proper understanding based on strict electronic calculations of Ge_n -containing Zintl anions will be necessary to fill the gap between theory and experiments. We present in this work a systematic density functional theory investigation on Ge_n^{m-} and AGe_n^- anions and AGe_n and A_2Ge_n neutrals (*n* =3-10; A=K, Na, Rb, Cs). The DFT ground-state structures and stabilization energies, electron affinities, ionization potentials, and vibrational frequencies of corresponding systems are expected to serve as useful references for predicting or explaining future experimental observations of Ge_ncontaining systems. We compare our optimized structures of free $\operatorname{Ge}_n^{m^-}$ with that of naked $\operatorname{Ge}_n^{m^-}$ observed in solids, predict structural and electronic properties for AGe, anions and AGe_n and A_2Ge_n neutrals, and describe the extent of electron transfer from metal atoms A to the Ge_n nuclei. Naked Ge_n^{m-1} are optimal systems for a detailed DFT study for two reasons: First, these anions are stable only when located in big channels created by special sequestering agents like [2,2,2crypt] which prevents electron transfer back to alkali cations from the Ge_n anionic nuclei and they are therefore as close to "gas phase" as one can possibly come in condensed phases, and second, most clusters studied here, except Ge_9^{3-} , have large HOMO-LUMO gaps and no unpaired electrons, making the single configuration ground-state calculations good approximations. This work is also a logical extension of our previous DFT studies on Ge_n and Ge_mSi_n microclusters,^{13,14} from neutrals and singly charged ions to highly charged anions and binary systems containing metal atoms.

II. METHODOLOGY

Structural optimizations in this work have been performed using the density functional theory of Becke's threeparameter hybrid functional with the Perdew/Wang 91 expression (B3PW91). Frequency analyses at the optimized structures are carried out at the same theoretical level to clarify if the optimized structures are true minima or transition states on the potential energy surfaces of specific clusters. The choice of density functional method has been fully justified for Ge-containing systems for the reason that it is an ab initio tool and it includes the correlation effect which has been found necessary for germanium-related systems at relatively low computational cost.^{11,13,14} The initial structures of free Ge_n^{m-} are taken either from the results for singly charged Ge_n^- published before,^{11,13,15} or constructed according to the observed configurations in solids, 2^{-8} or arbitrarily constructed to explore the configuration space more extensively. For binary clusters AGe_n^- , AGe_n , and A_2Ge_n (A=Li, Na, K, Rb, Cs), the metal atoms are initially arranged at faceor edge-capping positions with certain symmetry constraints. The initial structures are optimized with the basis of STO-3G first, and then fully optimized with the basis of 6-311G(d), which adds a single polarization function to 6-311G and results in one f function for first transition row atoms (d functions are already present for the valence electrons in these atoms), via the Berny algorithm in the GAUSSIAN '98 code.¹⁶ The basis set used for AGe_n and A_2Ge_n neutrals with heavy alkali metals (A=Na, K, Rb, Cs; n=5, 6) was the Los Alamos National Laboratory sets (LanL) for effective core potential (ECP) of double- ξ type, namely, the LanL2DZ, which consists of a small core ECP with ns and np orbitals in the valance space.¹⁶ Relativistic correlations for heavy atoms are considered in the ECP. Symmetry constraints are either reduced or removed whenever imaginary frequencies are found. For example, planar rhombus (D_{2h}) , the ground-state structure for both the Ge₄ neutral and Ge₄⁻ anion,^{11,13} is found unstable for Ge₄²⁻ with an imaginary frequency at 84*i* cm⁻¹. The true ground-state structure of Ge₄²⁻ is found to be a butterfly (D_{2d}) , which lies much lower in energy than both the rhombus and the tetrahedron (T_d) . Concerning spin multiplicities, we choose singlet states for systems containing even number of electrons and doublet states for systems with odd number of electrons, considering the fact that only Ge₉³⁻ has been found paramagnetic in EPR experiments.⁴⁻⁶

The procedure outlined above has been successfully applied to small Ge_n neutrals, Ge_n^- and Ge_n^+ singly charged ions ($n \leq 10$), and semiconductor binary clusters $A_n B_m$ (A, B=Si, Ge; $n+m \le 10$).^{13,14} It is expected to produce reasonable results for Ge_n^{m-} anions (m=2,3,4) and $A_l \operatorname{Ge}_n$ (l= 1,2) binary neutrals and anions in the same size range, for which strict electronic calculations have been lacking. Important low-energy structures at the DFT level are depicted in Fig. 1. These geometries have been confirmed to have no imaginary frequencies and therefore are true minima on potential energy surfaces of specific clusters. To check the effect of diffuse functions in basis sets, we compared the 6-311G(d) results shown in Fig. 1 with that of 6-311+G(d) basis which contains diffuse functions in the optimization processes for small naked anions $(n \leq 7)$. Inclusion of diffuse functions in the basis sets turned out to have little influence on the optimized results at the DFT level. For example, the 6-311+G(d) bond lengths obtained for Ge_5^{2-3} disagree with corresponding 6-311G(d) values only after the third decimals and both bases produce eventually the same vibrational frequencies as shown in Table II.

The DFT structures are further optimized employing the second-order Møller–Plesset perturbation theory (MP2) (Ref. 16) with the basis set of 6-311G(d) for Ge_n^{2-} in small size range (n=3-5). The reoptimized geometries are found to be quite close to the DFT ones. For example, the DFT apical-equatorial (a-e) bond length r_{a-e} and equatorialequatorial (e-e) bond length r_{e-e} for D_{3h} Ge₅²⁻ are 2.54 and 2.75 Å, respectively, close to corresponding MP2 values of 2.57 and 2.76 Å. The r_{a-e}/r_{e-e} ratio, which characterizes the D_{3h} geometry of Ge_5^{2-} , equals 0.92 at the DFT level and 0.93 at MP2. To clarify the proper level of basis sets and electron correlation of DFT and MP2 methods, configuration interaction calculations with all single and double substitutions from the Hartree-Fock reference determinant have also been performed for small clusters with the inclusion of all electrons (CISD(full)/6-31G).¹⁶ For Ge₅²⁻ at the CISD level, $r_{a-e} = 2.60$ and $r_{e-e} = 2.86$ Å, both slightly longer than corresponding DFT values, however, the bond length ratio $r_{a-e}/r_{e-e} \approx 0.91$ is kept almost the same as that of the DFT value of 0.92. The calculated results indicate that the geometrical shapes of the clusters checked are well maintained in these calculations though the structures may be expanded or compressed a little at different theoretical levels. The re-

FIG. 1. Some of the low-energy structures of homoatomic Ge_n^{2-} anions (a) and singly-charged heteroatomic KGe_n^- anions and K_2Ge_n neutrals (n=3-10) (b).

liability of DFT results obtained for bigger clusters are checked by comparison with available experimental results.

III. RESULTS AND DISCUSSIONS

A. Naked Zintl anions of the form $\operatorname{Ge}_n^{m-1}$ (n=3-10, m=2-4)

closo- and nido-type structures are stable for Ge_n^{2-} with s.e. = 2n + 2 and Ge_n^{4-} with s.e. = 2n + 4, respectively, while Ge_n^- and Ge_n^{3-} systems with 2n + 1 and 2n + 3 skeletal electrons are expected to exist as variants between the two boundaries. To clarify this intuitive expectation, we optimize the ground-state structures (GSS) of Ge_n^{2-} , Ge_n^{3-} , and Ge_n^{4-} in this part first and compare them with available experimental results and DFT structures published before for Ge_n^- .^{11,13,15} Their calculated HOMO-LUMO energy gaps, stabilization energies, and the three strongest infrared vibrational frequencies are listed in Table I.

TABLE I. The lowest-energy structures, HOMO-LUMO gaps E_{gap} (eV), stabilization energies E_{stab} (eV/atom), and the three strongest infrared active vibration frequencies (cm⁻¹) of free $\text{Ge}_n^{m^-}$ anions obtained at the B3PW91-DFT/6-311G(*d*) level.

Ge_n^{m-}	Symmetry	State	$E_{\rm gap}$	Estab	The three strongest IR frequencies
$\overline{\text{Ge}_3^{2-}}$	D_{3h}	${}^{1}A'_{1}$	2.63	1.85	199(<i>E</i> ′)
Ge_4^{2-}	D_{2d}	${}^{1}A_{1}$	2.72	2.41	235(<i>E</i>)
Ge_5^{2-}	D_{3h}	${}^{1}A'_{1}$	3.56	2.86	$260(A_2'')$ 196(A) 107(E')
Ge_6^{2-}	D_{4h}	${}^{1}A_{1g}$	3.22	2.96	$217(A_{2g})$
Ge_7^{2-}	D_{5h}	${}^{1}A_{1}^{\prime}$	2.88	3.05	$182(A_2'')$ $222(E_1')$
Ge_8^{2-}	C_{2h}	${}^{1}A_{g}$	2.34	3.02	$259(B_u) \ 131(B_u) \ 61(A_u)$
$Ge_9^{\tilde{2}-}$	C_{2v}	${}^{1}A_{1}^{0}$	2.23	3.21	$149(A) \ 184(A_1) \ 103(B_1)$
	D_{3h}	${}^{1}A'_{1}$	2.23	3.21	148(E') 184(A) 103(E')
Ge_9^{3-}	D_{3h}	${}^{2}A_{2}''$	1.16	2.65	$223(E')$ 168(B) 192(A_2'')
	C_{2v}	${}^{2}B_{2}$	1.16	2.65	$223(A) \ 168(A) \ 192(B_2)$
Ge ₉ ⁴⁻	C_{4v}	${}^{1}A_{1}$	3.34	1.76	$209(E) \ 217(A_1) \ 135(E)$
Ge_{10}^{2-}	D_{4d}	${}^{1}A_{1}$	2.98	3.27	$132(B_2) \ 224(B_2) \ 61(E_1)$
	C_{2v}	${}^{1}A_{1}$	2.98	3.27	$131(A_1) \ 223(A_1) \ 61(A)$

Different from the Ge_3 neutral and Ge_3^- anion which have isosceles triangles (C_{2v}) as global minima, the GSS of Ge_3^{2-} is an equilateral triangle (D_{3h}) with a DFT bond length of 2.48 Å and a CISD bond length of 2.51 Å. Conflicting with both Ge_4 and Ge_4^- which have planar rhombus (D_{2h}) GSS, the optimized GSS of Ge_4^{2-} is a butterfly (D_{2d}) with the Ge-Ge bond length of 2.47 Å and Ge-Ge diagonal distance of 3.07 Å at the DFT level, while corresponding CISD values are 2.52 and 3.14 Å, respectively. This structure is 0.43 eV lower in energy than the planar rhombus (D_{2h}) which is confirmed to be a first-order stationary point with an imaginary frequency at 84*i* cm⁻¹ (B_{3g}). The trigonal pyramid $\operatorname{Ge}_4^{2-}(C_{3v})$ is a local minimum 2.05 eV higher in energy than the butterfly global minimum. When triply charged, the GSS obtained for doublet Ge_4^{3-} remains as a butterfly. Further increasing the negative charge to -4, a perfect tetrahedron (T_d) turned out to be the global minimum of Ge_4^{4-} with the bond length of 2.682 Å. It is easy to understand this structural evolution based upon the valence electron counts of these Ge_4 anionic units: Ge_4^{4-} has 20 s and p valence electrons to meet the requirement of 5n valence electrons for an electron-precise E4 system and therefore favors the perfect tetrahedron structure (T_d) , while Ge_4^- , Ge_4^{2-} , and Ge_4^{3-} belong to electron-deficiency systems and consequently possess structures with lower symmetries distorted from the T_d tetrahedron. Fluxional behavior of Sn_4^{2-} in solution has been predicted⁹ and a similar situation is expected for Ge_4^{2-} . There have been no structural data from experiments for Ge_n^{2-} with $n \leq 4$ to compare with theoretical values.

Extensive calculations performed on closo-Ge₅²⁻ at various levels of theories are summarized in Table II. Its GSS is a trigonal bipyramid (D_{3h}) , the same as that of Ge₅ and Ge_5^- . Remarkable is the increase of the apical-apical distance r_{a-a} with the increase of negative charges: r_{a-a} increases from 3.11 for Ge₅, 3.63 for Ge₅⁻ to 3.96 Å for Ge₅²⁻. The calculated $r_{a-e} = 2.54$ and $r_{e-e} = 2.75$ Å are about 0.06 Å longer than corresponding mean experimental values of 2.48 and 2.69 Å observed in $(2,2,2-\text{crypt-K}^+)_2$. Ge_5^{2-} (where Ge_5^{2-} exists as a distorted trigonal bipyramid with the actual site symmetry of C_1),² but the bond length ratios are kept eventually the same in theory and experiment $(r_{a-e}/r_{e-e} \approx 0.92)$, indicating that DFT Ge₅²⁻ is actually an expansion of its observed structure by about 2.4%. The strong bonding in the a-e direction and weaker bonding in the e-e direction are also confirmed by both the DFT Mulliken overlap population of a-e/e-e=0.3217/0.0889 and the CISD value of 0.1508/-0.0793. In view of molecular orbital theory, the lowest unoccupied molecular orbital (LUMO) a_2'' of a Ge₅ neutral at the DFT level is characterized in the two apical atoms and filling extra electrons into this orbital increases the static repulsion in the direction of the three-fold axis. The calculated net charges on the two apical atoms increase from -0.09 for Ge₅, -0.22 for Ge₅, and finally, to -0.44 for Ge_5^{2-} , leading to an increased static repulsion between the two apical atoms and therefore longer a-a distances. Consequently, the r_{a-e}/r_{e-e} ratios for D_{3h} Ge₅^{*m*-} series increase steadily from 0.75, 0.85 to 0.92 with the increase of negative charges from m = 0, -1, to -2.

As expected from the electron counting role, $\operatorname{closo-Ge}_6^{2^-}$ has the square bipyramid (D_{4h}) as its GSS with the DFT bond length of $r_{a-e} \approx r_{e-e} = 2.64$ Å, about 0.11 Å longer than corresponding mean values of 2.54 and 2.52 Å observed in $D_4 [\operatorname{Ge}_6 {\operatorname{Cr}(\operatorname{CO})_5}_6]^{2^-}$.⁸ $\operatorname{Ge}_6^{2^-}$ shares the same geometry as Ge_6^- (though a little expanded) and has only one infrared active vibration mode (A_{2g}) located at 217 cm⁻¹. Similarly, $\operatorname{Ge}_7^{2^-}$ possesses the pentagonal bipyramid $(D_{5h}, {}^1A_1')$ global minimum with $r_{a-e} = 2.77$ Å and $r_{e-e} = 2.54$ Å, again an elongated bipyramid structure (D_{5h}) compared to Ge_7 and

TABLE II. The apical–equatorial (r_{a-e}) and equatorial–equatorial (r_{e-e}) bond lengths (Å), the Mulliken overlap population (op_{a-e}/op_{e-e}) , and normal vibration frequencies (cm^{-1}) of Ge_5^{2-} at different theoretical levels compared with corresponding experimental values for naked anions in solid (Ref. 2).

			Vibration frequency			requency		
Method	r_{a-e}/r_{e-e}	$\operatorname{op}_{a-e}/\operatorname{op}_{e-e}$	A_2''	A_1'	E'	A_1'	E''	E'
Experiment	2.48/2.69			269		201	(190,185)	(111,91)
B3PW91/6-311G(<i>d</i>)	2.54/2.75	0.2518/0.0112	260	259	195	191	174	106
B2PW91/6-311+G(d)	2.54/2.75	0.1515/0.0563	260	259	194	188	173	106
B3PW91/6-311+G(3df,2p)	2.53/2.75	0.3217/0.0889	260	259	195	188	174	105
CISD(FC)/6-31G	2.60/2.87	0.1508 / -0.079	244	246	190	193	157	106
CISD(FULL)/6-31G	2.60/2.86	0.1500/-0.081						
MP2/6-311G(<i>d</i>)	2.57/2.76	0.2918 / -0.002						

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 218.26.34.64 On: Sat. 25 Oct 2014 13:32:37 Ge_7^- . The best structure we got for $\text{Ge}_8^{2^-}$ is a distorted biface capped octahedron (C_{2h}), similar to that of the C_{2h} Ge₈ neutral.¹³

As mentioned in the Introduction, nonagermanide $\operatorname{Ge}_{Q}^{m-1}$ anions (m=2,3,4) have rich chemistries in solids and an unambiguous prove for the charge assignment of Ge_9^{2-} and Ge_9^{4-} is still in debate. ⁶ This situation is simplified for free anions in gas phase. We have tried various kinds of initial structures for Ge_9^{2-} . The optimized results indicate that the regular TTP (D_{3h}) with the prism height of 2.768 Å has almost the same energy as a C_{2v} distorted MASP. The latter structure can also be viewed as a distorted TTP with one elongated prism height of 2.769 Å and two slightly shorter prism heights of 2.768 Å. The two structures produce eventually the same vibration frequencies as can be seen from Table I, further indicating that they are indistinguishable at the current DFT level. Similarly, Ge_9^{3-} , the only one paramagnetic anion with an unpaired electron, is found to have two isomers with almost the same energy-a regular TTP (D_{3h}) with the prism height of 2.958 Å and a distorted TTP (C_{2v}) which has one prism height of 2.956 Å and two slightly elongated prism heights of 2.959 Å. Ge_9^{4-} , a typical 2n+4 system, clearly favors the C_{4v} MASP nido-type structure over a C_{2v} distorted MASP in total energy. The calculated bond lengths between capping atoms and the rectangular apical atoms are 2.61 Å in TTP Ge_9^{2-} , close to the averaged experimental value of 2.56 Å, while the DFT bond length of 2.80 Å in the triangular planes perpendicular to the threefold axis is 0.13 Å longer than the corresponding averaged experimental value of 2.67 Å.3 For Ge9-, our optimized C_{4v} structure agrees well with its measured structure. For example, at the DFT level, $r_{a-e} = 2.64$ and $r_{e-e'}$ = 2.65 Å, close to the averaged experimental values of 2.56 and 2.60 Å, respectively. There are several observed variants for Ge_9^{3-} in different salts.⁴⁻⁶ In our DFT C_{2v} Ge_9^{3-} , the three calculated prism heights are 2.956, 2.959, and 2.959 Å, respectively, qualitatively agreeing with the Ge₉³⁻ unit incorporated in [K-crypt]₃Ge₉ which has one shorter prism height of 2.868 Å and two elongated prism heights of 3.154 and 3.324 Å.5 The mean bond length in the triangles perpendicular to the threefold prism axis is 2.756 Å, about 0.10 Å longer than the averaged observed value of 2.657 Å.

The distorted bicapped antisquare prism structure $(\sim D_{4d})$ of decagermanide Ge_{10}^{2-} was resolved from a 1/3:2/3 disorder of the anions.⁴ Our calculated D_{4d} Ge_{10}^{2-} has an a-e distance of 2.63 Å, an e-e distance of 2.85 Å, and a bond length between e-e' atoms in different planes of 2.59 Å, close to the corresponding averaged experimental values of 2.56, 2.85, and 2.52 Å, respectively. The relatively large bond length discrepancy between theory and experiment for Ge_{10}^{2-} is acceptable considering the fact that some of the interatomic distances could not be accurately determined in experiment due to the disorder of Ge_{10}^{2-} anions in solids.⁴

It is obvious from the discussion above that the optimized DFT $\operatorname{Ge}_n^{m^-}$ free anions possess geometries in agreement with that of the naked $\operatorname{Ge}_n^{m^-}$ anions observed in experiments and have longer bond lengths within about 5% than their counterparts incorporated in solids in most cases. MP2 and CISD bond lengths are found systematically longer than corresponding DFT values as can be seen in the example of Ge_5^{2-} listed in Table II. With the CISD(FC)/6-31+G(d) method which contains diffuse functions in the basis, the optimized bond lengths obtained for Ge_3^{2-} and Ge_4^{2-} are 2.478 and 2.465 Å, respectively, very close to the DFT values shown in Fig. 1. We conclude that the theoretically optimized structures of free Ge_n^{m-} are eventually expansions of corresponding naked anions incorporated in solids and better agreement can be achieved by systematically scaling the theoretical structures. Concerning the long standing controversy about the instability of anions within DFT, we think that, the agreement of our DFT minima with that of more strict MP2 and CISD methods for small Ge_n anions $(n \leq 5)$, and, more importantly, with available structures observed in solids in the size range of n=5-10, has provided strong supportive evidence for the stabilities of our DFT minima. In addition, it is unlikely that artifacts of the finite size of the basis sets within DFT can produce a systematical agreement as that achieved in this work.

To clarify the controversy over the proposal that independent $\text{Ge}_9^{2^-}$ and $\text{Ge}_9^{4^-}$ coexist in one crystal unit,³ we consider the energy balance in the following reaction:

$$Ge_9^{2-}+Ge_9^{4-}=2Ge_9^{3-}$$

where at the DFT level with the inclusion of zero-point correction, $\Delta E^{\circ} = -293$, $\Delta H^{\circ} = -293$, and ΔG° = -291 kJ mol^{-1} . The huge negative values of ΔE° , ΔH° , and ΔG° clearly indicate that, when two independent Ge₉ anions with a total charge of -6 coexist in one system, there would be a strong tendency to form two Ge_9^{3-} anions instead of the mixed valent couple of Ge_9^{2-} and Ge_9^{4-} . As an oxidizing agent, Ge_9^{2-} would be very unstable to coexist with a strong reducing agent Ge_9^{4-} . Similar conversion is expected to exist in condensed phases. If Ge_9^{2-} and Ge_9^{4-} coexisted in one structural unit, there would be an effective electron transfer between them, resulting in two Ge_9^{3-} anions. So our calculation provides the first quantum chemistry evidence that the mixed valent couple of Ge_9^{2-} and Ge_9^{4-} proposed for crystal $[K-(2,2,2)-crypt]_6.Ge_9Ge_9.(en)_x$ (x=2.5) may have been converted into two Ge₉³⁻ anions automatically under equilibrium condition. In addition, it is hard to explain in experiments why $[K-(2,2,2)-crypt]_6$. Ge₉Ge₉. (en)_x (x=0.5 and 1.5) complexes consist of two separated paramagnetic Ge_{0}^{3-} anions confirmed by EPR measurements, while $[K-(2,2,2)-crypt]_6.Ge_9Ge_9.(en)_{2.5}$, which differs from the former two only in the numbers of solvent molecules, possesses a charge disproportionation of Ge_9^{2-} and Ge_9^{4-} . Ge_9^{3-} anions are strongly favored in energy over the mixed valent system of Ge_9^{2-} and Ge_9^{4-} and the solvent effect is very unlikely to reverse this conversion reaction. The two wellseparated naked Ge₉ anionic units in one crystal may well be two Ge_9^{3-} anions with different shapes rather than carrying different charges. For the same reason, it is expected that all the Ge_9 anions in different complexes labeled as 1a, 1b, 2a, 2b, and 2c in Ref. 6 are Ge_9^{3-} anions with slightly different shapes. Various evidences discussed above indicate that the structures of Ge_n^{m-} anions can not be expected to be rigid in condensed phases and very likely the relatively large $\mathrm{Ge}_{\mathrm{o}}^{3}$ anions behavior fluxionally in condensed phases, similar to

FIG. 2. The frontier-orbital energy levels of $\text{Ge}_{9}^{2^-}(D_{3h})$, $\text{Ge}_{9}^{3^-}(D_{3h})$ and C_{2v} , $\text{Ge}_{9}^{4^-}(C_{4v})$, and $\text{Ge}_{10}^{2^-}(D_{4d})$ and C_{2v} .

the fluxional behavior of $\text{Sn}_9^{4^-}$ observed in NMR measurements.¹ In such cases, the theoretically optimized structures of free anions under idealized condition will serve as useful reference geometries in identifying and characterizing these anions in future experiments.

The DFT frontier orbital energy levels of Ge_9^{2-} , Ge_9^{3-} , Ge_9^{4-} , and Ge_{10}^{2-} are displayed in Fig. 2 and corresponding HOMO-LUMO energy gaps E_{gap} listed in Table I. When compared with available EHMO results and experimental values,⁴ the DFT energy gaps of $E_{gap} = 2.23$ for D_{3h} Ge₉²⁻ and 1.16 eV for C_{2v} Ge₉³⁻ approximately double corresponding EHMO values of 0.9 and 0.4 eV, DFT E_{gap} = 2.98 eV for D_{4d} Ge²⁻₁₀ is in the same order as that of the experimental value 2.48 eV and the EHMO value 2.91 eV, while DFT $E_{\rm gap} = 3.34$ for C_{4v} Ge₉⁴⁻ is smaller than both the observed value 4.93 eV and the EHMO value 4.42 eV. The difference can be attributed to the fact that our DFT energy levels are calculated at the theoretically optimized structures while the EHMO calculations were based on experimental structures with averaged bond lengths. The D_{3h} and C_{2v} configurations of Ge_9^{3-} are confirmed to have very similar energy levels and the same situation happens to the D_{4d} BASP $\operatorname{Ge}_{10}^{2-}$ and the C_{2v} distorted BASP Ge²⁻₁₀. It should be noted that the energy gap 1.16 eV of Ge_9^{3-} is about one-half of the gap values of other anions which all have $E_{gap} \ge 2.23 \text{ eV}$. When one electron is added to the LUMO (a''_2) of a D_{3h} TTP Ge_9^{2-} characterized in the direction of the threefold axis, an open-shell system Ge_9^{3-} is formed and the addition of the extra electron to the antibonding a_2'' induces substantial changes to the molecular energy level distribution (see Fig. 2) and considerable prism height elongation from 2.77 Å in Ge_9^{2-} to 2.96 Å in $\operatorname{Ge}_{2}^{3^{-}}$. The extra electron splits the LUMO $a_{2}^{"}$ of the D_{3h} $\operatorname{Ge}_{2}^{3^{-}}$ into the HOMO $a_{2}^{"}(\alpha)$ and LUMO $a_{2}^{"}(\beta)$ of D_{3h} Ge_{0}^{3-} with the energy gap of 1.16 eV. The orbital energy levels lower than the HOMO are raised substantially as can be seen in Fig. 2, consequently decreasing the total stabilization energy of the Ge_9^{3-} compared to Ge_9^{2-} . It should be noted that the HOMO-LUMO energy gaps obtained above at the DFT level should be treated as relative quantities in qualitative comparisons for the reason that only the HOMO

FIG. 3. Comparison of the stabilization energies of Ge_n neutrals, singlycharged Ge_n⁻, and doubly-charged Ge_n²⁻ anions (n = 4 - 10).

eigenvalues have rigorous physical meaning within the DFT scheme.^{17–19}

The stabilization energies of Ge_n^{2-} (n=4-10) are depicted and compared with that of Ge_n and Ge_n^- in Fig. 3. Similar variation trends exist for these clusters in gas phase. The stabilities of the anions increase quickly from n=4 to n=5 and exhibit a clear maximum at n=7 and a recovery at n=9 and 10, while the Ge₈ units exist as clear local minima in all the three cases. The high stabilities of Ge₇ and Ge₁₀ are in accordance with the experimental observation that medium-sized Ge_n clusters dissociate by losing Ge₁₀ units in most cases and Ge₇ in some cases.^{13,20}

B. Free Zintl particles of the forms KGe_n^- , KGe_n , and K_2Ge_n (n=3-10)

K atoms in KGe_n^- , KGe_n , and K_2Ge_n binary clusters act as electron donors and the nature of the partially ionic K-Ge_n bonds depends primarily on the extent of electron transfer. Based on their optimized structures shown in Fig. 1, we discuss their structural relationships with free Ge_n^{2-} anions and compare their relative stabilities with experiments. The stabilization energies, HOMO-LUMO energy gaps, and the positive charges on K atoms in the KGe_n^- anion and related electronic properties of KGe_n neutrals are summarized in Table III.

When one K atom is added to a equilateral triangle Ge₃ unit, a trigonal pyramid KGe₃⁻ (C_{3v} , ${}^{1}A_{1}$) with the K–Ge bond lengths of 3.24 Å and Ge–Ge distances of 2.49 Å is formed. Sizable electron transfer from K to Ge occurs as indicated by the calculated Mulliken charges of +0.362 on K and -0.454 on Ge. With the introduction of two K atoms, a trigonal bipyramid K₂Ge₃ (D_{3h} , ${}^{1}A_{1}$) neutral results with the charges on apical K atoms increased to +0.643 and the opposite charges on Ge atoms increased to -0.429. The Ge₃ equilateral triangle maintained in K₂Ge₃ has the *e*-*e* bond length of 2.49 Å, very close to corresponding value of 2.48 Å in free Ge₃²⁻.

Addition of one K atom to a butterfly Ge_4 produces a distorted edge-capped butterfly KGe_4^- (C_s , ${}^1A'$), in which the K atom moves slightly towards one three-membered face with two K–Ge bond lengths of 3.12 Å and a longer one of 3.79 Å. Introducing one more K atom, a bi-edge capped

TABLE III. The optimized ground-state symmetries, stabilization energies E_{stab} (eV/particle), HOMO-LUMO energy gaps E_{gap} (eV), and the Mulliken charges on K atoms (PCs) of KGe⁻_n, and the vertical ionization potentials VIPs (eV), the energies of HOMO orbitals E_{HOMO} (eV), and adiabatic electron affinities AEAs (eV) of KGe_n (n = 3 - 10).

KGe _n	Symmetry	$E_{\rm stab}$	Charges on	$E_{\rm gap}$	$E_{\rm HOMO}$	VIPs	AEAs
3	C_{3v}	2.98	+0.362	1.01	4.26	6.34	1.13
4	C_s	2.88	+0.467	1.47	4.51	6.22	1.51
5	C_s	3.81	+0.497	1.89	4.87	6.58	1.90
6	C_{3v}	3.16	+0.587	1.65	4.57	6.39	2.00
7	C_s	2.85	+0.642	1.48	4.07	5.58	1.57
8	C_1	3.70	+0.583	2.34	4.68	6.06	2.17
9	C_{3v}	4.25	+0.717	1.95	4.88	6.33	3.28
10	C_s	3.94	+0.692	2.33	5.01	6.35	2.64

butterfly K₂Ge₄ with the symmetry of C_1 results, which is 0.26 eV lower than the C_{2v} bi-face capped butterfly structure in energy. The D_{2d} bi-edge capped butterfly K₂Ge₄ isomer, which appears very similar to the C_1 structure in shape with four equal K–Ge bond lengths of 3.16 Å, lies only 0.00036 eV higher than the C_1 global minimum at the DFT level. The C_1 K₂Ge₄ possesses the positive charges of +0.723 on K atoms and the K–Ge distances between 3.16 and 3.17 Å. The butterfly Ge₄ nucleus is maintained with the averaged Ge–Ge bond length of 2.45 Å and the diagonal distance of 3.16 Å, close to corresponding values in the free butterfly Ge₄^{2–}.

 KGe_5^- turned out to be a face-capped trigonal bipyramid $(C_s, {}^1A')$ lying 0.018 eV lower in energy than the edgecapped trigonal bipyramid structure (C_{2v}) . When two K atoms are capped on nonadjacent faces of a trigonal bipyramid Ge_5 , a distorted bicapped trigonal bipyramid K₂Ge₅ (C_1) results. This structure is 0.388 eV more stable than the adjacent bi-face capped C_{2v} screw K₂Ge₅ due to the weaker static repulsion between the capping K atoms existing in it. The two K atoms in C_1 K₂Ge₅ possess the positive charges of +0.716. This obvious electron transfer causes the Ge₅ nucleus to approach the s.e.=2n+2 requirement. In the Ge₅ nucleus in C_1 K₂Ge₅, r_{a-a} =4.01 Å and the averaged r_{e-e} = of 2.71 Å, are both quite close to corresponding values of 3.96 and 2.75 Å in free D_{3h} Ge₅²⁻.

Introducing a K atom to Ge_6^- produces a face-capped octahedron KGe_6^- (C_{3v} , 1A_1) with the K–Ge bond length of 3.20 Å and the positive charge of +0.587 on the K atom. With one more K atom added on the opposite face, the bicapped antitrigonal prism K₂Ge₆ (D_{3d} , ${}^1A_{1g}$) results with the K–Ge bond length of 3.28 Å and the positive charge of +0.731 on both K atoms. KGe₇⁻ is a face-capped pentagonal bipyramid (C_s) with the averaged K–Ge bond length of 3.20 Å and a positive charge of +0.641 on K.

It is easy to conclude from above discussion that Ge_n nuclei in K_2Ge_n neutrals approach the 2n+2 closo- Ge_n^{2-} deltahedral geometries as consequences of effective electron transfers from K atoms to Ge_n nuclei. This conclusion shows that the ZKB principle is applicable to small A_2Ge_n , paralleling the situation found in Sb₃SnA and Sb₃InA₂ in an *ab initio* study,¹⁰ where alkali atoms A function as electron donors and the Sb₃Sn and Sb₃In units approach the electron-

precise Sb₄ tetrahedron geometry with 20 valence electrons.

Structural optimization of KGe_n^- with $n \ge 8$ proves to be much more complicated and time consuming. A distorted face-capped antisquare prism KGe $_8^-$ (C_{2v} , 1A_1) is confirmed to have an imaginary frequency at 148i cm⁻¹. When the symmetry constraint is released, the lowest-energy structure obtained for KGe_8^- through a full structural optimization is a distorted tricapped antitrigonal prism with C_1 symmetry, lying 1.05 eV lower in energy than the C_{2v} one and possesses the positive charge of +0.585 on the K atom. KGe₉⁻ has a tetracapped TTP global minimum $(C_{3v}, {}^{1}A_{1})$ with the K–Ge distance of 3.17 Å and the positive charge of +0.717 on K, but KGe₉ neutral failed to converge with this geometry during structural optimization. The best structure obtained for KGe₉ is a slightly distorted bi-face capped antisquare prism $(C_{2v}, {}^{2}B_{2})$. Adding one face-capping K atom to the D_{4d} BASP Ge₁₀ produces a face-capped distorted BASP KGe₁₀ $(C_s, {}^{1}A')$ with the averaged K–Ge bond length of 3.24 Å and the positive charge of +0.692 on the K atom. KGe₁₀ neutral has a similar optimum structure $(C_s, {}^2A')$. The C_s KGe_{10}^{-} is confirmed to be about 0.84 eV lower in energy than the pentacapped trigonal prism $\text{KGe}_{10}^{-}(C_{3v}, {}^{1}A_{1})$ formed by adding a face-capping K atom on the tetracapped trigonal prism $\operatorname{Ge}_{10}^{-}(C_{3v})$ along the threefold axis. It should be noted that KGe_9^- has higher stabilization energy than KGe_{10}^- , a stability order different from that of homoatomic $\operatorname{Ge}_n^{m-}(m$ =0,1,2), where decagermanides are more stable than nonagermanides (see Fig. 3).

As discussed above, KGe_n^- anions and KGe_n neutrals exist as face-capped or edge-capped deltahedral structures which are derivatives of corresponding Ge_n units in most cases. Their stabilization energies relative to independent Ge_n neutrals¹³ and K atoms are plotted in Fig. 4. Prominent maxima at n=5 and 9 and the high stabilization energies at n=10 and 8 clearly indicate that KGe_5^- , KGe_9^- , KGe_{10}^- , and KGe_8^- are the most stable species in this size range, while KGe_4^- and KGe_7^- exist as two local minima. This finding is in good accordance with the TOF mass spectrum of KGe_n^- in a laser desorption experiment of K_4Ge_9 alloy, where magic numbers were observed for KGe_5^- , KGe_9^- , and KGe_{10} with high abundances and a weak peak detected for KGe_8^- , while KGe_3^- , KGe_4^- , KGe_6^- , and KGe_7^- were absent completely.¹

FIG. 4. Stabilization energies of singly-charged binary KGe_n^- anions (n = 3-10).

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP

FIG. 5. Stabilization energies of binary AGe₆ (C_{3v}) and A₂Ge₆ (D_{3d}) neutrals with different alkali metals (A=Na, K, Rb, and Cs).

To investigate the relative stabilities of AGe_n and A₂Ge_n neutrals with different alkali atoms capped on the same Ge_n nuclei, the DFT stabilization energies of C_{3v} AGe₆ and D_{3d} A₂Ge₆ (A=Na,K,Rb,Cs) are shown in Fig. 5, using the basis set of LanL2DZ. Higher stabilities are found for A=K, and Cs where electron transfers occur most efficiently. Similar results are obtained for AGe₅ and A₂Ge₅ for which the highest stabilization energies also occur at A=K. This conclusion agrees with that drawn from an *ab initio* study on Sb₃SnA by Hagelberg *et al.*¹⁰

Using Koopman's theorem, energy of the HOMO E_{HOMO} can be used to estimate the ionization potential of AGe_n at first approximation. Vertical ionization potentials (VIPs) calculated as the energy difference between the optimum KGe_n neutrals and corresponding KGe⁺_n cations with the neutral geometries are tabulated and compared with E_{HOMO} in Table III and Fig. 6. The adiabatic electron affinities (AEAs) of KGe_n obtained as the energy difference between optimum KGe⁻_n and KGe_n are also listed. VIP and E_{HOMO} vary with approximately the same trend as that of the stabilization energies of KGe⁻_n displayed in Fig. 4; VIP and E_{HOMO} exhibit a maximum at n=5, an obvious recovery at n=9 and 10, and a clear minimum at n=7, again in agreement with the magic numbers observed for KGe⁻_n in TOF mass spectroscopy.

FIG. 6. The vertical ionization potentials (VIPs) and HOMO energies of corresponding KGe_n neutrals (n=3-10).

C. Normal vibration frequencies of closo-Ge₅²⁻

 Ge_5^{2-} is the only one species in the naked Ge_n^{2-} series which has experimentally known Raman spectra first compared and assigned by analogy with that of Bi_5^{3+} .^{2,19} Our calculated normal vibration frequencies for Ge₅²⁻ at different theoretical levels are compared with the measured Raman peak positions² in Table II. Of the 6 vibration bands A_2'' $+A'_1+E'+A'_1+E''+E'$ of D_{3h} Ge₅²⁻ (corresponding to 9) vibrating modes), three $A_2'' + E' + E'$ are infrared active with the relative intensities of 1.000, 0.131, and 0.026, respectively, and five $A'_1 + A'_1 + E'' + E' + E'$ Raman active. The strongest band ν_1 at 269 cm⁻¹ is assigned to the totally symmetric stretching mode A_1' , the second strongest band ν_2 at 201 cm⁻¹ to the totally symmetrical stretching mode A'_1 which mainly involves the stretching of the two apical atoms, and the third band ν_3 split into two peaks at 190 and 185 cm⁻¹ assigned to the degenerate E'' mode, which has been split into two absorption peaks due to the symmetry reduction from D_{3h} adopted in calculation to C_1 at the real crystal site.² The two weakest broad bands ν_4 at 111 cm⁻¹ and ν_5 at 91 cm⁻¹ are attributed to the degenerate band E', which is both Raman and infrared active and has been split into two normal vibrational modes with all atoms vibrating in the directions perpendicular to the threefold axis. Failure to observe the two Raman forbidden bands A_2'' and E' located at 260 and 195 cm⁻¹ at the DFT level, which are the two most intensive infrared bands, indicates that vibration coupling at the C_1 crystal site is not significant, as noticed in Ref. 2. An averaged discrepancy of 11 cm^{-1} between the six measured Raman peaks and the calculated Raman allowed bands at the DFT level is satisfactory, considering the fact that the calculated DFT frequencies are for the free D_{3h} Ge_5^{2-} anion and large uncertainties existed in experiments in determining the exact locations of the weak and broad Raman bands, especially ν_4 and ν_5 .² The largest discrepancy of 15 cm⁻¹ does occur at v_5 which belongs to the degenerate E' energy band split due to the symmetry reduction in the real crystal.

IV. SUMMARY

We have performed a systematical DFT investigation on highly charged Ge_n^{m-} (m=2, 3, 4, n=3-10), singly charged KGe_n^- , and neutral K_2Ge_n in this work. Homoatomic free Ge_n^{m-} anions are found to follow the closo-type structures for singly, doubly, and triply charged anions (m =1,2,3), while the quadruply charged Ge_9^{4-} favors a nidotype C_{4v} structure. Stabilization energies of Ge_n , Ge_n^- , and $\operatorname{Ge}_n^{2^-}$ exhibit a quick increase from n=4 to n=5, a clear maximum at n = 7, and an obvious recovery at n = 9 and 10, while the Ge₈ units exist constantly as local minima in all three cases. As an example, a DFT assignment of the six observed Raman peaks of Ge_5^{2-} with a discrepancy of 11 cm⁻¹ is presented. The controversy over the charge dislocation of Ge_9^{2-} and Ge_9^{4-} is discussed in detail. Our DFT calculation suggests that the $Ge_9^{2-} + Ge_9^{4-}$ mixed valent ionic couple be automatically converted into two Ge₉³⁻ anions for

his article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 218.26.34.64 On: Sat. 25 Oct 2014 13:32:37 thermodynamic reasons. Face-capped or edge-capped deltahedral structures are predicted for KGe_n^- anions and KGe_n and K_2Ge_n neutrals. Stabilization energies of KGe_n^- anions exhibit two maxima at n=5 and 9, high stabilities at n=8and 10, and two minima at n=4 and 7. VIPs and E_{HOMO} of KGe_n are found to follow approximately the same variation trend as that of the stabilization energies. The theoretically obtained magic numbers at n=5, 9 and 10 agree well with the abundance distributions of KGe_n^- observed in TOF mass spectra.

Medium-sized Ge clusters containing several dozens of atoms have been detected in gas phase²⁰ and discrete large Ge_n^{m-} clusters predicted to exist in solids and solution.¹ It still remains a huge challenge in both theory and experiments to explore the structural relationship between them in different phases and to describe the structural transition from prolate stacks to the bulklike spheres as cluster sizes increase. Further more, transition metal-containing $CoGe_n^-$ anions which contain the triply charged Ge_n^{3-} nuclei, were recently discovered in gas phase with the magic number of n=9 and 10.²¹ This discovery presents an interesting topic in theory to compare structures and properties of MGe_n^- with that of AGe_n^- clusters studied in this work.

- ¹T. F. Fassler, H. J. Muhr, and M. Hunziker, Eur. J. Inorg. Chem. 1998, 1433.
- ²J. Campbell and G. J. Schrobilgen, Inorg. Chem. 36, 4078 (1997).
- ³C. H. E. Belin, J. D. Corbett, and A. Cisar, J. Am. Chem. Soc. **99**, 7163 (1977).
- ⁴C. Belin, H. Mercier, and V. Angilella, New J. Chem. 15, 931 (1991).
- ⁵T. F. Fassler and M. Hunziker, Inorg. Chem. **33**, 5380 (1994).
- ⁶T. F. Fassler and U. Schutz, Inorg. Chem. **38**, 1866 (1999).
- ⁷S. C. Critchlow and J. D. Corbett, J. Chem. Soc. Chem. Commun. **1981**, 236.
- ⁸P. Kirchner, G. Huttner, K. Heinze, and G. Renner, Angew. Chem. Int. Ed. Engl. **37**, 1664 (1998).
- ⁹M. J. Rothman, L. S. Bartell, and L. L. Lohr, J. Am. Chem. Soc. **103**, 2482 (1981).
- ¹⁰F. Hagelberg, S. Srinivas, N. Sahoo, and T. P. Das, Phys. Rev. A 53, 353 (1996).
- ¹¹E. F. Archibong and A. St-Amant, J. Chem. Phys. 109, 962 (1998).
- ¹²J. Wang, G. Wang, and J. Zhao, Phys. Rev. B 64, 205411 (2001).
- ¹³Si-Dian Li, Z. G. Zhao, H. S. Wu, and Z. H. Jin, J. Chem. Phys. **115**, 9255 (2001).
- ¹⁴ Si-Dian Li, Z. G. Zhao, X. F. Zhao, H. S. Wu, and Z. H. Jin, Phys. Rev. B 64, 195312 (2001).
- ¹⁵P. W. Deutsch, L. A. Curtiss, and J.-P. Blaudeau, Chem. Phys. Lett. **344**, 101 (2001).
- ¹⁶ M. J. Frisch *et al.*, GAUSSIAN 98, Revision A.6, Gaussian, Inc., Pittsburgh, PA, 1998.
- ¹⁷R. W. Rudolph and W. L. Wilson, J. Am. Chem. Soc. **103**, 2480 (1981).
- ¹⁸J. M. Hunter, J. L. Fye, and M. F. Jarrod, Phys. Rev. Lett. **73**, 2063 (1994).
- ¹⁹S. Ulvenlund, K. Stahl, and L. Bengtsson-Kloo, Inorg. Chem. **35**, 223 (1996).
- ²⁰A. A. Shvartsburg and M. F. Jarrod, Phys. Rev. A 60, 1235 (1999).
- ²¹X. Zhang, G. Li, and Z. Gao, Rapid Commun. Mass Spectrom. **15**, 1573 (2001).