第9卷 第5期 1993年10月 Vol.9, No.5 Oct., 1993

锡原子簇的结构和相对稳定性

李思殿*

R.约翰斯顿 J.莫诺

(山西运城高等专科学校,运城 044000)

(萨赛克斯大学分子科学院, BN1 9QJ, UK)

摘要 基于从固体锡魂立的多体展开势能函数,采用座标直接优化方法预测了锡 原子演分子(Sn₂-Sn₁₀)的结构和相对稳定性,并用蒙特卡罗方法验证了有关 小的原子簇(Sn₂-Sn₁₀)的所有结果。优化结果表明:(1)小的锡原子簇分子 (Sn₂-Sn₁₀)倾向于密堆积结构,与锡晶体结构无关;(2)中等大小的簇分子, 如 Sn₄₇,Sn₇₁,Sn₆₇及Sn₁₄₇等,则呈α-Sn晶体的畸变结构,其外围各层 原子到中心原子的距离受到压缩,且某些层被劈裂为两层或多层;(3)随着原子 旗尺寸的进一步增大,结构畸变逐渐减弱,簇分子的单原子平均结合能缓慢增大, 其外推值大约在 Sn₇₄₀处趋近于 α-Sn 的结合能。

关键词: 锡原子族 结构 稳定性 势能函数

1 导言

对碳族元素的原子簇,特別是硅原子簇和碳原子簇,已有大量理论和实验研究^[1-5]。有 关锡原子簇的工作则相对较少。多种实验方法已检测到锡原子簇的存在^[8-8],激光气化-情 性气体凝聚技术可以产生含高达 32 个锡原子的锡原子簇分子^[9]。但是迄今为至,对由锡这 样的重元素构成的原子簇,相对论电子结构计算还只限于双体 Sn₂ 和三体 Sn₃^[10-13]。本文试 图以半经验计算弥补这一理论和实验上的巨大差距。

Murrell 等^[14] 1990 年提出的多体展开势能函数模型已用于计算金刚石类晶体,如 C,Si, Ge 及 a-Sn 等的晶格参数、能量、声子散射频率及弹性常数,并可以给出常见晶体结构,如 金刚石、简单立方(sc)、体心立方(bcc)、面心立方(fcc)及 β-Sn 的相对能量^[15-17]。我们进 一步的目标是将已确立的势能函数用于表面、缺陷及原子簇研究。作者关于 硅原子簇的工 作^[18] 已经取得有意义的结果,本文继续报导有关锡原子簇的工作,以期提供锡原子簇结构 和相对稳定性的一般概况,并为表面研究提供信息。

2 理论方法与结构优化程序

根据多体展开势能函数模型^[14],原子簇 X_n的总能量主要来源于二体项和三体项的贡献 之和

642

¹⁹⁹²⁻⁰⁴⁻⁰⁹ 收到初稿, 1992-09-20 收到修改稿。 山西省政府资助项目

$$V(r) = \sum_{i} \sum_{j>i} V_{ij}^{(2)} + \sum_{i} \sum_{j>i} \sum_{k>j} V_{ijk}^{(3)}$$
(1)

其中, 二体项为 Redberg 函数

$$V_{ij}^{(2)} = -D_e(1+a\rho)\exp(-a\rho)$$
⁽²⁾

$$\rho = \frac{r_{ii} - r_e}{r_e} \tag{3}$$

这里,re,De分别是模型的键长参数和能量参数。三体项为扩展的 Redberg 函数

$$V_{ijk}^{(3)} = D_e P(Q_1, Q_2, Q_3) \exp[-\beta Q_1]$$
(4)

其中,对称坐标[Q_1,Q_2,Q_3]是位移矢量[p_1,p_2,p_3]的线性变换,满足同粒子体系的置换对称性

$$\begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 2/\sqrt{6} & -1/\sqrt{6} & -1/\sqrt{6} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$$
(5)

 $P(Q_1,Q_2,Q_3)$ 为对称坐标的四次多项式

$$P(Q_{1},Q_{2},Q_{3}) = C_{0} + C_{1}Q_{1} + C_{2}Q_{1}^{2} + C_{3}(Q_{2}^{2} + Q_{3}^{2}) + C_{4}Q_{1}^{3} + C_{5}Q_{1}(Q_{2}^{2} + Q_{3}^{2}) + C_{6}(Q_{3}^{3} - 3Q_{3}Q_{2}^{2}) + C_{7}Q_{1}^{4} + C_{8}Q_{1}^{2}(Q_{2}^{2} + Q_{3}^{2}) + C_{9}(Q_{2}^{2} + Q_{3}^{2})^{2} + C_{10}Q_{1}(Q_{3}^{3} - 3Q_{3}Q_{2}^{2})$$
(6)

详细推导请参见文献^[14-18]。通过拟合 α-Sn 的弹性常数、声子散 射 频 率 及 β-Sn 的相对能 量^[17],我们确立了锡的最佳四次方多体展开势能函数。

		· · · · · · · · · · · · · · · · · · ·		
r _e	2.81 Å	<i>C</i> - 0.872	C • - 1.505	•
D,	1.00 eV	C ₂ ~ 4.980	C ₇ 2.949	
a	6,25	$C_3 - 13.145$	C, -15.065	
ß	3.55	C . ~ 4.781	C 10.572	
C _o	1.579	C ₅ 35.015	C ₁₀ 12.830	

表1 本文所用的锡的四次方势能函数 Table 1 Parameters defining the tin potential used in this study

对已知势能函数解析形式的原子簇 X_n,原则上可以将 3n 个原子座标作为独立自由变量, 通过能量极小化来优化其分子结构。但在实际处理过程中,尤其是对中等和大原子簇,由于 自由变量数猛增 (3n),优化过程 极 为 耗费机时;加之势能面具有多重极小点,而现有优化 程序只能发现局部极小点,至于具体发现那个极小则取决于初始结构的构造,因而如何提高 发现最优结构的几率,寻找尽可能多的稳定异构体 (局部极小),是一反复尝试和比较检验的 过程。根据原子簇的大小及其特点,本文结构优化分别采取如下方案:

(a) 对小的锡原子簇(n<15),施行随机化初始结构的完全优化,即以随机构造的"分子 片"作为初始结构,直接对 3n 个原子座标进行能量优化。具体调用 Nag-程序库随机数序列 产生过程 E05FAF 以完全随机的方式产生 3n 个初始座标,然后通过 Nag-程序 库优化过程 E04JAF 直接优化分子的结构和能量。程序可以随意设定重复以上优化过程的次数,以保证得

WULI HUAXUE XUEBAO (Acta Phys.-Chim.) 1993

7

到所有的,或至少是化学上和物理上重要的极小点;最佳分子结构对应于势能面上的能量最低点,出现机率最大,自然随之确定。在结构优化过程中,我们对所有小原子簇分子均设定100次以上的随机优化,并反复操作,发现的稳定异构体虽然出现顺序有所不同,但结构相同,而且数目很有限。例如,对 Sn_{10} 发现四种稳定异构体, Sn_{5} 有两种稳定异构体,其中能量最低的 C_{2v} Sn_{10} 及 D_{3h} Sn_{5} 出现几率最大.这里要强调指出,虽然原子簇 X_n 可能的儿何异构体数目很大,但由于化学成键及能量因素,特别是 Jahn-Teller 畸变,大多数异构体并非势能面上的极小点,无法稳定存在。例如,具有 O_h 对称性的八面体 Si₆,Ge₆ 及本文将要讨论的 Sn₆都不是相应势能面上的极小点,均蜕变为具有更低能量 的 C_{2v} 结构^(1,3-5)。因而,多数原子簇的稳定异构体的数目是很有限的^(1-5,18-19)。

(b) 对中等大小的原子簇(n=15~150),由于结构优化较费机时,随机构造的初始结构 又极易导致解离的优化结果,本文采取"微观晶体碎片"初始结构的完全优化和分层优化两 种方案,并对照所得结果。"微观晶体碎片"初始化方案,是以任一原子为中心,按照常见晶 体(本文选取金刚石(dia),sc,bcc及fcc四种)的点阵结构形成初始原子分布。例如,Sn₂₇的 c类初始结构是一立方体(见图 1),由三个同心原子层构成,各层所含原子数分别为6,12和 8,本文约定标识为1:6:12:8,而Sn₂₇的金刚石类初始结构则应标记为1:4:12:12。分层优 化不改变初始结构中各层原子的角向分布,但允许各层的半径自由伸缩,甚至相互交错。这 一处理可以大大减少变量数,如 sc类Sn₂₇由完全优化的 27×3=81个自变量减少到4个变 量。

(c) 对更大尺寸的原子簇(n>150),则只进行"微观晶体碎片"初始结构的分层优化。

(d)对直接优化得到的原子簇的所有结果,运用蒙特卡罗方法进一步验证,两种方法 所得结果完全吻合.蒙特卡罗方法每次以随机步长随机地移动一个原子,如果该移动引起的体系能量变化ΔV为负,是一有利移动,予以接受,否则,则予放弃.用这种能量降低的方法肯定得到的是一极小点,但不一定是能量最低点.

图 1 简单立方(sc)层状 Sn17 初始结构 Fig.1 The unrelaxed sc shell structure of Sn17

为此,引进温度因子T,允许分子结构以 exp($-\Delta V/T$)的几率越过能 ΔV ,从一个极小位置 "跳跃"到另一极小点,以发现更多的局部极小并比较得到最佳结构和能量.该方法适用于 优化结果的验证,直接用于初始结构的优化则嫌其速度慢,且精度欠佳.

3 锡原子簇的结构和相对稳定性

3.1 Sn₂-Sn₁₅

本文预测的 Sn_2 和 Sn_3 的几何结构与相对论 MRSD 赝势法为 $Sn_2^{(10)}$ (r=2.82Å)及全电子 有效空间 MCSCF 方法为 $Sn_3^{(13)}$ (r=2.732Å, a=83°)所建议的结构良好吻合(参见表 2),且 理论计算键长与实验光谱测定的 Sn_2 键长(2.746Å)也很接近。 Sn_3 的最稳定结构是一顶角为 87.5°的等腰三角形,它是 Sn_3 势能面上的唯一极小点。 Sn_4 的 最稳定结构是一略为波皱的正

644

方形,四个顶角均为89.7°.四角体 Sn₄则蜕变为次稳定结构三角锥(C_{3v}).在 Sn₄四元蝶形 环的两个对角原子间再增加一个桥原子,便形成三角双锥(D_{3h})(图 2, Π),它是 Sn₅的最稳 定结构.这一结构与相对论电子结构计算预测的 Si₅ 及 Ge₅ 的基态构型^[3]相同.值得注意的 是, D_{3h} Sn₅ 在三重轴上严重压缩,以致三角锥中沿赤道方向的化学键断裂,我们的结果与量 子化学计算为 Si₅ 所预测的情形^[1]一致.在 Sn₅ 的三角双锥的任一棱上再增加一个桥原子, 形成双原子桥式蝶形环(N),这一结构中两个桥原子与底部原子轻微成键,是 Sn₆ 的最稳定结 构(C_{2v}).这一结果与 Si₆ 的 C_{2v} 结构中微个桥原子与底部原子轻微成键,是 Sn₆ 的最稳定结 构(C_{2v}).这一结果与 Si₆ 的 C_{2v} 结构类似^[1,18].Sn₇ 的最稳定异构体是反三棱柱 Sn₆ 的衍生 物,具有 C_{3v} 对称性(V).它也可以看成在椅式 Sn₆ 的 C_3 轴上增加一个原子,该原子同时与 最邻近的三个原子形成新键.在 C_{3v} Sn₇ 结构中沿三重轴方向再增加一个原子,该原子同时与 最邻近的三个原子形成新键.在 C_{3v} Sn₇ 结构中沿三重轴方向再增加一个原子,该原子与底 部三原子形成三个新的键,便形成 Sn₆ 的最稳定结构——立方体(VI).Sn₆ 的最稳定结构是一 边桥式立方体(VI, C_{2v});而 Sn₁₀则采取双原子相邻边双桥立方体(VI).Sn₆ 的最稳定结构是一 边桥式立方体(VI, C_{2v});而 Sn₁₀则采取双原子相邻边双桥立方体(VI), Sn₆ 影。 Si₁₀ 所预测的结构相吻合^[1].表 2给出部分小原子簇的结构数据,图 2则是本文势能函数所 确定的最稳定结构及其衔生关系.

# 2	小锡原子瘥(Sn	Sn)#	的部分低的	能 吾 构 刃 及:	算平均单	原子结合	魮
α		2 ~ 1 0 / 0	70271161	ᄠᄅᆩᆋᄰ	~ ~ ~	~ 7 30 0	66

Table 2 Part of the low-lying structures and averaged binding energies per atom fortin clusters with 2-10 atoms

luster	structure	symmetry	bond l	ength/A	binding energy/eV		
Sn,	dimer	Dh	2.81		0.50		
Sn 3	I	C _{2v} (g) ^a	2.84		0.67		
	linear	D∞h(n)ª	2.92		0.60		
	equilateral						
	triangle	<i>D</i> ,,(n)	3.12		0.64		
Sn₄	I	S,(g)	2.94 (1-2)	4.15 (1-3)	0.91		
	tetrohedron	$T_d(n)$	3.43		0.82		
	triangular cone	$C_{a\nu}(l)^{a}$	2.98 (1-2)	3.92 (3-4)	0.83		
Sn.	I I	D _{sh} (g)	3.18 (1-2)	4.11 (2-4)	1.12		
			4,24 (1-5)				
	pentagon	$D_{sh}(n)$	2.74		1.00		
Sn.	N	C_{i} ,(g)	3,06 (1-2)	2.96 (3-6)	1.36		
			2.90 (4-6)	4.17 (5-6)			
	octohedron	$O_h(n)$	3.50		1.26		
	chair	$D_{sd}(n)$	3.08 (1-2)	3.95 (2-6)	1.27		
Sn,	v	C (g)	3.06 (1-3)	3.11 (4-7)	1.55		
Sn,	VI	$O_{h}(\mathbf{g})$	3.07		1.79		
Sn,	IV	$C_{2\nu}(\mathbf{g})$	2.90 (3-7)	2.89 (1-3)	1.87		
			2.77 (1-2)	2,95 (7-8)			
Sn,,	V	C 2 v (g)	2.74 (1-2)	2.76 (2-3)	1.97		
			3.02 (4-9)	2.77 (1-6)			
			3.67 (5-10)	2.82 (3-4)			

* g = global minimum, l = local minimum; n = non - minimum

3.2 Sn15-Sn150

如方案b所述,本文在该范围内分别对四种常见晶体进行了分层优化和完全优化,完全 优化所得到的较稳定结构取决于原子簇所含的原子数,表3是金刚石类初始结构的优化结果, 容易发现: (1) 在所有情形下,两种方案的优化结果均比金刚石结构稳定,且完全优化的结 构比分层优化的结构更稳定;(2)与初始金刚石结构相比,两种方案得到的结构均受到压缩, 且随着原子数的增加,压缩强度逐渐减弱,这从表 3 所列的相对层半径 a_i = R_i/R_{di} 的变化可 以明显反映出来, Sn₂₈, Sn₃₅及 Sn₄₇优化结构的最外层层半径分别压缩9.3%, 4.7%及3.5%, 而 Sn₁₄₇ 最外层压缩度仅 1.6%,对其它初始结构,情形完全类似,例 如 sc 类 Sn₂₇ 分层优化 后, 第一、二、三层的比半径分别为1.02,0.99及0.94(参见图1),由于最外层压缩度最大, 使初始的立方体结构更趋近于圆球。(3)部分原子簇的全优化结构仍然是类似于初始金刚石 结构的层状分布(如表 3 所列各例),但多数层被压缩,某些层劈裂为两层或多层。如Sn₁ 由 (1:4:12:12:6:12:24)结构,第六层一分为二,成为(1:4:12:12:6:12:12:12); Snar和 Sn147 的第六:、七两层均发生劈裂,再如 Sn30 的金刚石类结 构 为(1:4:12:12:1), 完 全 优 化 后成为六层结构(1:4:6:6:6:6:1).(4)部分锡原子簇完全优化后,完全失去了初始结构的层 状分布特征, 如 Sn.,, Sngg 等。这种情形对 sc, bcc 及 fcc 类初始结构更为普遍。应该注意到, 由于键的压缩及各层原子的重新分布,原子簇分子具有比 a-Sn 更紧密的结构,这样有利于提 高内层原子的配位饱和度,减少表面原子的悬空键。另外,优化过程中还发现,某些分子结 构由一"相"经过层的交错可以变化为另一"相"。如 fcc Sn₁₀(1:12:6)经分层优化后,第一 层与第二层交错换位,变为 sc Sn₁₀(1:6:12),与从 sc Sn₁₀分层优化的结果完全相同。类似 地, bcc Sn₂₇(1:8:6:12)分层优化转变为 sc Sn₂₇(1:6:12:8)。

3.3 Sn150 以上的锡原子簇

图 3 是 Sn₇-Sn₈₀₀ 范围内部分锡原子簇分层优化的单原子平均结 合 能随原子簇大小的变化趋势。显然, Sn₂₀, Sn₃₅ 及 Sn₄₇ 的金刚石类分层优化结构比在同一范围的其它结构更稳定;

646

WULI HUAXUE XUEBAO (Acta Phys.-Chim.) 1993

Cluster		diamond			shell-optimisation		t	full optimisation			
	Ns	NA	$R_{\rm di}/{\rm A}$	E _A /eV	a i	E _A /eV	Ns	NA	ai	E,/eV	
Sn ₂ ,	1	4	2.81	1,999	0.972	2.055	1	4	0.973	2.057	
	2	12	5.38		0.833		2	12	0.833		
	3	12	5.62		0.910		3	12	0.907		
Sn 3 5	1	4	2.81	1.928	0.960	1.949	1	4	0.946	1.971	
	2	12	5.38		0.846		2	12	0.849		
	3	12	5.62		0.936		3	12	0.938		
	4	6	6,49		0.967		4	6	0.953		
Sn47	1	4	2.81	1.814	0.983	1.840	78-	4	0.950	2.021	
	2	12	5.38		0.822		2	12	0.837		
	3	12	5.62		0,956		3	12	0.957		
	4	6	6.49		0,983		4	6	0.979		
	5	12	7.07		0.969		5	12	0.965		
Sn 7 1	5	12	7.07	1.997	0.990	2.023	5	12	0,985	2.139	
	6	24	7.95		0.972		6	12	0.950		
							6'	12	0.976		
Sn ₈₇	6	24	7.95	2.065	0,989	2.073	6	12	0.980	2.096	
							6'	12	0.988		
	7	16	8.43		0.985		7	4	0.974		
							7'	12	0.984		
Sn ₁₄₇	6	24	7.95		0,993	2.301	6	12	0.979	2,394	
							61	12	1.013		
	7	16	8.43		0.983		7	4	0.977		
							7'	12	1,039		
	9	24	9.60		0,990		9	24	0.987		
	10	24	10.26		0.984		10	24	0.984		

表 3 金刚石结构的分层优化及完全优化结果的比较(Sn10-Sn147)

Table 3 Comparison between the structures optimised in shells and the ones optimised fully

Note, N_S = the Nth shell; N_A = Number of atoms; R_{di} = radii; E_A = binding energy per atom; $a_i = R_i/R_{di}$, the relative radii of optimised structures

而在 $Sn_{70}-Sn_{100}$ 区 间, 简单立方的优化结构比其它结构更稳定, 对于大于 100 个原子的原子 簇,本文只得到金刚石结构的优化结果,但图 3 反映的结合能的变化趋势是肯定的。可以看 出,这些准晶体结构的分子的结合能随所含原子数的增多而缓慢增大, Sn_{281} 的相应值为2.5eV。 根据这种增大的趋势线性外推,大约在 Sn_{740} 处单原子平均结合能趋近于 a-Sn 的结合能3.14 eV,它是能量曲线的上限(β -Sn 的结合能比 a-Sn 低约 0.02 eV)。密度函数计算估计硅原子簇 Si_n 的单原子结合能在 100 < n < 1000 范围内趋近于金刚石硅的结合能 ^[20],与本文为锡原子 簇外推的结果 Sn_{740} 吻合.

4 对锡原子簇结构和本文所用势能函数的讨论

本文结果表明,从总的趋势来看,小的锡原子簇类似于硅和锗原子簇,倾向于密堆积结构;中等和较大锡原子簇则呈比 a-Sn 结构更紧凑、能量上更有利的畸变结构。这三种原子簇 的结构均与碳原子簇不同。各种实验和理论研究表明,C2-C10 呈链状或单环结构,更大的碳原

WULI HUAXUB XUBBAO (Acta Phys.-Chim.) 1993

子簇则构成空心碳球-富勒烯(fullerenes)^[2·19]。碳原子簇采取开放或中空碳球结构,其表面 原子的悬空键通过多重π键和多重中心得到饱和;而硅、锗,尤其是锡原子簇,只能采取密 堆积结构以增加单键的数目,减少表面的悬空键。多体展开势能函数的优化结果还表明,中 等和大锡原子簇表面原子以形成蝶形四元环和椅式六元环为主,这一预示与中等碳原子簇也 不一致。后者以相邻的五元和六元环覆盖球状分子的表面,并形成超共轭效应。

本文所用的多体展开势能函数参数化于固体,它为锡原子簇预测了合理的结构和能量. 当然,作为半经验方法,该势能函数不能在精度上与从头计算相比;且该函数对小原子簇计 算的结合能偏低。虽然D。可以通过重新标度使能量计算大为改善,但作者认为这只是个参数 化问题,它丝毫不影响原子簇的结构优化过程,因而在本文计算中保留原势能函数的能量参 数D。,而正是该势能函数简洁、连续的解析形式,使得对含数百个重金属原子的原子簇的结 构优化成为可能。本工作将进一步探讨中等和大原子簇的详细结构,并将该势能函数的应用 扩展到表面和缺陷研究。

▶ 考 文 献

- 1 Bornstein E R. Atomic and Molecular Clusters, Elsevier Scientific Publishers B V, 1990. 277
- 2 Kratschmer W, Lamb L D, Fostiropoulos K, Huffman D R, Nature, 1990, 347, 354
- 8 Raghavachari K, J. Chem. Phys., 1986, 84: 5672
- 4 Raghavachari K, Rohfing C M. J. Chem. Phys., 1988, 89: 2219
- 5 Pacchicni G. J. Chem. Phys., 1985, 83, 3520
- 6 Honig R E. J. Chem. Phys., 1953, 21: 573
- 7 Gingerich K A, Desideri A, Cocke D L. J. Chem. Phys., 1975, 62: 731
- 8 Martin T P, Schaber H. J. Chem. Phys., 1985, 83: 855
- 9 Laihing K, Wheeler R G, Wilson W L, Duncan M A. J. Chem. Phys., 1987, 87: 3401
- 10 Pacchioni G. Molec. Phys., 1985, 55: 211
- 11 Pitzer K S, Balasubramanian K. J. Phys. Chem., 1982, 86: 3068
- 12 Balasubramanian K, Pitzer K S. J. Chem. Phys., 1983, 78: 321
- 13 Balasubramanian K. J. Chem. Phys., 1986, 85: 3401
- 14 Murrell J N, Mottram R E. Molec. Phys., 1990, 69: 571
- 15 Murrell J N, Rodriguez-Ruiz J A. Molec. Phys., 1990, 71: 823
- 16 Al-derzi A R, Johnston R L, Murrell J N, Rodriguez-Ruiz J A. Molec. Phys., 1991, 73, 265
- 17 Eggen B R, Johnston R L, Li Sidian, Murrell J N. Molec. Phys., 1992, 76: 619
- 18 Li Sidian, Johnston R L, Murrell J N. J. Chem. Soc. Faraday Trans., 1992, 88: 1229
- 19 William J R W, Richard J V. Chem. Rev., 1989, 89, 1713
- 20 Tomanek D, Schluter M A. Phys. Rev. Lett., 1986, 56: 1055; Phys. Rev. B, 1987, 36: 1208

STRUCTURES AND RELATIVE STABILITIES OF TIN CLUSTERS

Li Sidian^a R. Johnston^b J. Murrell^b

(a. Yuncheng Advanced Training College, Yuncheng 014000, Shanxi, P.R. China, b. University of Sussex, Brighton BNI 9QJ, U.K.)

ABSTRACT

A many-body expansion interatomic potential obtained from bulk tin was used to predict the structures and energies of small and medium size tin clusters (Sn_2-Sn_{300}) . The optimized results show that small tin clusters (Sn_2-Sn_{15}) prefer to take compact structures as their most stable configuration, all unrelated with the bulk lattice; while medium tin clusters, like, Sn_{47} , Sn_{71} , Sn_{87} , and Sn_{147} , are still kept in shell structures which are distortions of the microcrystalline fragments of solid tin, with all the shells compressed and some shells split. The energy per-atom of these clusters increases steadily with the increasing of the cluster size, approaching the cohesive energy of *a*-tin at about Sn_{740} (extrapolated), where the most stable structure should match the bulk lattice except for a few percents of surface atoms.

Keywords: Tin clusters, Structures, Stabilities, Potential energy function