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Potentials have been derived for carbon and tin by optimizing to the energies,
bond lengths and phonon frequencies of the diamond structures and the energies
and bond lengths of the other experimentally known solid phase, graphitic
carbon and f-tin, respectively. In both cases the other cubic solids (SC, BCC and
FCC) and 2-dimensional networks (triangles and squares) are shown to have
higher energies. Potentials have also been produced for silicon and germanium
which reproduce the diamond structure data, and the lattice energies and dis-
tances predicted by electronic structure calculations for the SC, BCC and FCC
solids.

1. Introduction

In the first three papers of this series [1-3] we have shown that a potential function
consisting of two-body and three-body terms can give, as the most stable phase, the
commonly found crystal structures of atomic solids, and that the parameters arising
in this function can be optimized to experimental phonon frequencies and elastic
constants.

Papers II and III have dealt in detail with the diamond structure solids, C, Si and
Ge. The potentials published in IIT [3] reproduce the lattice energies and lattice
constants exactly, the elastic constants with only small errors, and the main features
of the phonon dispersion curves along the (g, 0, 0), (g, g, 0) and (g, g. q) vectors. The
largest difference between calculated and observed frequencies is in the low frequency
TA modes, and that may be due to the neglect of anharmonicity in the standard
Born-von Karman harmonic analysis.

The principal objective of this series of papers is to develop a general strategy for
determining potential functions which cover a wide range of configuration space;
paralleling a series of papers which tackled the same task for small polyatomic
molecules [4]. There is, of course, no guarantee that, by fitting parameters to the
properties of a diamond structure, we shall obtain a satisfactory picture of other
regular structures, and it is even less likely that we shall reproduce the properties of
impurities and surfaces. Taking the molecular analogy, there is no reason why a
potential optimized to the properties of HCN (say) should reproduce the properties
of its isomer HNC or of the transition state between these two minima on the
potential surface.

One of the most important features of our work so far is that fitting parameters
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to the properties of the diamond structure gives potentials for which the other cubic
structures, SC, BCC and FCC, are less stable; this is not a condition that we had to
impose. This suggests that by increasing the flexibility of our potentials we should be
able to reproduce the diamond properties as well as before and, in addition, reproduce
explicit praperties of other solid phases.

The stability of a solid phase is determined by its free energy and to deduce this
from a potential requires a statistical analysis. However, the electronic energies of
structures can now be calculated quite reliably from the Schrdodinger equation using
pseudo potentials and the density functional model; the lattice energies and geo-
metries of silicon have been calculated for several structures using this technique, and
for the diamond structure the results agree well with experimental values [5]. In two
of the cases that we study in this paper, Sn and C, other phases are known which are
stable at normal pressures and temperatures, and their enthalpies of formation can be
estimated.

The potential function proposed in papers I-11I contains three types of parameter.
Energy (D) and distance (r.) scaling parameters are determined at the end of the
optimization routine to reproduce the lattice energy and lattice distance of one
structure exactly (this presupposes a cubic lattice with only one distance parameter).
Second, there are exponential parameters for the two-body and three-body terms; in
all previous work these have been taken as equal, since no significant improvement
was found by making them different. In the current work, we gain considerably by
relaxing this condition. Finally, we chose a set of coeflicients in the three-body
polynomial which is optimized to phonon frequencies and elastic constants of the
lattice and to other properties that are specified.

The full potential is defined by the following expressions
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2. Application to Si and Ge

In paper III [3] the best Si and Ge potentials, as judged by their least squares fit
to phonon and elastic constant data, gave errors of up to 11% in the nearest
neighbour distances of the SC, BCC and FCC phases, and up to 17% in the lattice
energies (both relative to diamond), these errors being by reference to the results of
electronic structure calculations [5]. Such calculations, which are based on pseudo
potentials and density functionals, are found to be remarkably accurate when tested
against experimental data. For example, for the Si diamond structure the lattice
energy 1s accurate to 4-5% and the lattice distance to 0-4% [5].

Our computer programs have now been extended to calculate the lattice energies
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and interatomic distances of the diamond, SC, BCC and FCC phases, and also of the
2-dimensional hexagonal (graphitic), square, and triangular nets; currently, there are
no calculations on these 2-dimensional nets. In addition, the Born-von Karman force
constants are calculated for up to the fifth shells of the diamond lattice. These results
are then passed to a numerical least squares routine (NAG Library EO4FDF [6]) and
the coefficients ¢; optimized for a given choice of @, and a;; optimization with respect
to @, and a; 1s by inspection. For certain values of ¢, explored by the NAG routine the
lattice collapsed and, to prevent this, we added to the two-body term a sharply rising
exponential, exp (—50(p + 0-2)), which prevents the nearest neighbour distance
being significantly less than 0-8r..

The phonon frequency parameters and elastic constants on which the least squares
fit is based are defined in paper III (which also gives the experimental data), and the
only modification we have made to our earlier work is to take all weighting factors
for these data as unity. A decision had then to be made on how to introduce the lattice
energies and distances of the other cubic phases into our least squares routine, and
what weighting factors to use. Our choice was to take the dimensionless ratios of
quantities relative to their diamond lattice values and to use weighting factors so as
to obtain a roughly equal balance between the phonon and elastic constant data on
the one hand and the lattice energies and distances on the other.

Potentials were first derived for a weighting factor of one and the exponents a, and
a; covering a grid from 3-0 to §8-0. Two regions were found to give low RMS values:
low exponents (@, = 4-6, a; = 3-4) and high exponents (a, = 5-8, a; = 6-8). An
important difference between these is that in the low exponent region the 2D struc-
tures have high energies (low stabilities) and in the high exponent region they have low
energies; often lower than the energy of the diamond structure. Currently there are
no ab initio data on the 2D structures, although calculations for such structures are
now being made for some elements, and are clearly of great importance for the type
of analysis we are undertaking.

The best potentials derived in the low exponent region were satisfactory with
-respect tq the available data, gave good-looking potential energy curves, smooth with
a single minimum, and were easily found by the NAG minimization routine starting
from the initial point ¢; = 0. However, the convergence of these potentials with added
shells was poor. Our calculations have been made by summing over all atoms in shells
around a central atom which are less than 2-6 times the first shell radius; this brings
in 5 shells for diamond (which is necessary for a good phonon description) and 6, 7
and 6 shells for SC, BCC and FCC, respectively. However, for low exponents, the
atoms in shells at a distance greater than 2-6 make a significant contribution to the
lattice energy.

We examined a model with an arbitrary cut-off of the potentials to zero beyond
a specific distance. This is straightforward for the 2-body term (say, put ¥® = 0 for
distances greater than 2-6ry, r, being the nearest neighbour distance). For the three-
body terms the recipe is less obvious. We investigated a model in which three-body
terms are set to zero if any one of the three distances is greater than 2-6r,, but found
that this gave a poor least squares result in the low exponent region. For this reason
we have concentrated our attention on solutions in the high exponent region where
convergence is not a problem.

When potentials were obtained in the high exponent region solely from the
phonon and elastic constant data, the energy ordering of the cubic structures was
generally qualitatively satisfactory and the 2D structures had a higher energy than the
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Table 1. Potential function for Si and Ge and the calculated force constants (10*dynecm™!).¢

Si Ge Si Ge

a, 6-50 6-50 o 5-663 5086
as 6-50 650 B 3-650 3-332
DleV 2:918 2-330 u 0-472 0-428
r./A 2:389 2-559 A —0-358 —0-294

v 0-203 0-132
Co 3-598 2:986 0 0-040 0-044
¢ —11-609 —13-778 W —0-090 —0-089
¢ 13-486 29-843 A 0-202 0-126
G —18:174 —14-291 v 0-060 0-055
C4 — 5570 —28-628 & 0-006 —0-023
cs 79-210 61-935 w 0-061 0-055
Cs — 6458 —1-418 A —1-328 — Q327
¢ 23-383 33-565 u” 0-036 0-041
Cg —111-809 —99-248 i —0-025 —0-024
Cy 9-705 8-881 v 0-035 0-043
C10 38-:297 30-103 0" —0:027 —0-021
“The force constants o . . . 3" refer to Cartesian displacements of atoms in first to fifth

shells and are defined explicitly in paper III [3]. It should be noted that there is an additional
repulsive contribution to the 2-body term, as defined in the text, whose object is to prevent
collapse of some structures at small lattice distances.

diamond structure. When the structure weighting factor was greater than unity, the
2D squares structure was more stable than the diamond structure, and sometimes the
SC structure was also more stable than diamond. The most satisfactory weighting
factor for Si was found to be 0-8 and potentials with a, and a; in the region of 6-5 gave
the best results. Varying these exponents by + 0-5 gave little change in the RMS value,
and it would be necessary to have additional data, particularly on the energies and
geometriesof 2D structures, to give a firmer tolerance to the exponents.

Our optimum potential for Si and its associated Born-von Karman force con-
stants is given in table 1. According to the weighting criteria for phonons now being
used, this potential gives a better fit to the phonon data than the potentials given in
paper III and is also much better in respect of the energies and interatomic distances
of the non-diamond structures. It can be seen from table 2 that the stability of SC is
overestimated and that of FCC underestimated, and the interatomic distances are all
a little too large. Another fault that we have noted is that the potential curve for
the 2D hexagonal lattice has a second minimum (just) at an interatomic distance
approximately 0-8 of the true minimum; a better potential without this feature could
presumably be obtained if we had specific data on the 2D structures, but in any case
it is unlikely to have a significant effect on observable properties of Si systems.

The properties of the Ge lattices were reproduced by potentials very similar to
those for Si and, following our practice in paper I1I, we took the same exponents for
Ge and Si to simplify future studies on Si/Ge mixtures. The same weighting factor for
the structural data (0-8) was also used. The Ge potentials and resulting data are also
shown in tables 1 and 2. All potential curves in this case were smooth, with a single
minimum.

Finally, we comment on convergence of the NAG minimization routine; this was
much more difficult for the high exponent than for the low exponent region, and we
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Table 2. .Comparison of output and input data for Si and Ge. C; are elastic constants (units
10 dynecm™2) V* = V/V (dia), r* = r[r (dia).” Hex, sq, and tri refer to the 2D pets of
hexagons, squares and triangles, respectively.

Si Ge
Input Output Input Output
Ci 1657 1-672 1:32 1-34
Cp, 0-639 0-623 0-49 0-46
Cu 0-796 0-757 0-68 0-63
V* (SC) 0-93 0-97 0-93 0-98
V* (BCC) 0-89 0-88 0-90 0-89
V* (FCC) 0-88 0-84 0-89 085
r* (SC) 1-07 112 109 113
r* (BCC) 1-13 1-21 1407 1:22
A A{RCC) 1-16 1-26 1-21 1:27
V* (hex) - 0-74 - 0-74
V* (sq) - 0-88 - 0-95
V* (tri) - 0-94 - 0-98
r* (hex) - 1-05 - 1-08
r* (sq) - 1-20 - 1-21
r¥ (tri) - 1-09 - 1-10

“The elastic constants are from reference [7] and the lattice energies and distances from
reference [5].

frequently converged on potentials with good RMS values which were unsatisfactory
in other respects: notably, curves with large negative values for ¢, and ¢, and positive
values for ¢,, which collapsed at short intermolecular distances (negative values of
Q,). The best procedure we found was first to converge to a cubic polynomial (¢,—c;)
from starting values with all coefficients zero, and to use the resulting coefficients, plus
c;—¢p = 0, as starting values to converge to the full quartic polynomial.

B ‘-z
\ 3. Application to Sn

o-Sn or grey tin has the diamond structure and is a semiconductor, but it is
unstable above 286 K, converting to f-Sn or white tin, which is metallic. 3-Sn is more
dense than o-Sn and has a body-centred tetragonal structure. One can picture a
reaction path from o to the B form as a compression along the ¢ axis and an expansion
along the @ and b axes (a = b) (see figure 1), although this is not necessarily the lowest
energy pathway for the phase transition [8]. The ¢ axis compression effectively changes
the coordination number of all atoms from 4 to 6.

The lattic energy and lattice distance are normally converged quite well for the
diamond structure by summing out to fifth neighbours, but for B-Sn this is not the
case as the ¢ axis compression brings in four relatively close atoms from what are
seventh neighbours in diamond; in the diamond cubic unit cell they are at (1, 1, 5),
(-1, —1,5), (1, —1, —5) and (—1, 1, —5). These atoms have therefore been
included in the two-body and three-body sums for B-Sn.

The phonon dispersion curves for a-Sn at 90 K have been determined by Price,
Rowe and Nicklow [9] along the [g¢, 0, 0], [¢, ¢, 0] and [g, ¢, g] wave-vectors using
inelastic neutron scattering. There are as yet no experimental measurements of the
elastic constants of a-Sn, and we have therefore used values estimated by Price and
Rowe from their phonon data [10]. For the B-Sn structure we have an estimated
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Figure 1. Relationship between the o- and B-Sn structures. For o-Sn the body-centred
tetragonal cell is indicated by the thicker lines. a-Sn: ¢ = 4-584 A, ¢ = 6483 A, ¢/a =
J2-B-Sn:a = 5832A, ¢ = 3-181 4, c/a = 0-545.

enthalpy at 0K, relative to o-Sn (0:016eV) [11] and its lattice parameters (¢ = b =
5-832A, ¢ = 3-181A) [12].

It was convenient for our analysis to describe the B-Sn lattice in terms of two
parameters: 17 = \/2(a/c), a parameter which is 1 for diamond and 2-593 for the
experimental B-Sn structure, and S = ry/r,, the ratio of the nearest neighbour dis-
tances in the  and a lattices whose experimental value is 1-076. However, optimizing
the B-Sn structure in two dimensions was found to be quite time-consuming as the
topography of the surface was very sensitive to small changes in the 3-body coef-
ficients. We therefore chose to optimize in the constant volume approximation which
has been used by others for electronic structure calculations on such systems [13]. For
B-Sn structures in which the volume per atom is constant, and equal to that in the
dfamond stmycture, S and T are related by

8 = (@7 + BT 4)

The optimum values of S and 7 derived in this way were very close to the exact optima
for the potentials we produced.

Fitting only to the data for a-Sn (twelve phonon derived quantitites and three
elastic constants) could be achieved with high accuracy using only a cubic polynomial
in the 3-body term and exponents in the region @, = a; = 7. Moreover, for these
potentials the diamond structure was generally the most stable cubic structure. How-
ever, the value of T for these potentials was generally much too high (typically > 3-5)
so the geometry of B-Sn was poorly given by these potentials. Adding the lattice
energy and 7 to our minimization procedure (various weighting factors were explored)
led to potentials which gave a reasonable representation of the phonon frequencies,
but the diamond structure was less stable than some of the other cubic structures; this
was true for either a cubic or quartic polynomial.

Two further problems were found with potentials that fitted the above data.
Firstly, when the (7, S) surface was examined, it was either very flat around the B-Sn
geometry or there were more than two minima on the surface. Second, the value of
r.necessary to fit the o-Sn lattice distance was rather large. For our current study there
is nothing wrong in this as the diamond lattice distance is always reproduced exactly
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Table 3. Potential function for Sn and associated force constants (10*dynecm™") for the
diamond structure.”

a, 6-25 o 3-238
a, 3-55 i 3-018
DfeV 1000 u 0-129
r.]A 2-805 & 0-239

v —0-115
¢o 1-579 B 0-384
€ —0-872 W —0-058
I —4-980 A —0-053
P —13-145 v 0-248
Cq —4-781 & —0-104
¢s 35-015 T —0-089
Ce —1-505 Vi —0-319
¢ 2:949 i 0-174
e —15-065 I 0-013
Co 10-572 v 0-096
1o 12-830 5" 0-112

“The potential was based on a lattice energy (0 K) of 3-14eV [14] and a lattice constant
(90K) of 6483 A [12].

by our scaling procedure, but if the potentials are used to study small Sn clusters then
they are found to have large interatomic distances, in conflict with theoretical esti-
mates [15].

In summary, no satisfactory potential was found to reproduce just the a-Sn
phonon data and the B-Sn lattice energy and geometry. To solve the problem, we
therefore added to our least squares data set two further constraints. The first was to
remove the flatness of the surface around the 3-Sn minimum by making the potential
at T = 2-0 and 3-0 greater than that at T, by 0-1D, and the second was to make r,
equal to the nearest neighbour distance in the diamond lattice, both conditions
introducad into the minimization program with various weighting factors. All poten-
tials were examined over the full (7, S) surface to confirm that they had only two
minima (those for «-Sn and B-Sn) and it was established that the energies of the other
cubic structures and the two dimensional lattices of triangles, squares and hexagons
were all less stable. The most satisfactory potential according to the above criteria is
given in table 3, and the quality of the fit can be seen from the data quoted in
tables 4 and 5.

Table 3 includes the Born-von Karman force constants for our optimum potential
but these are not, of course, optimum for the phonon elastic constant data alone.
Indeed, it can be seen from table 2 that some of the phonon parameters are rather
poor. Much better potentials in this respect are obtained in the high exponent region;
the parameters of such a potential are given in table 6. The main defect with this
potential is that the SC structure is more stable than diamond.

We also give in table 6 the force constants deduced by Zdetsis [16, 17] from his
analysis of the phonon data alone. Going out to fifth neighbours, Zdetsis obtains a
near perfect fit to the phonon curves but, as can be seen from table 4, his force
constants do not fall off appreciably at long range, with 1", for example, being greater
than all but the first neighbour force constants. In paper III [3], we made similar
observations concerning Zdetsis’ force constants for C, Si and Ge. In fact, Zdetsis
himself points out that any force constants obtained in such a manner need not
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Table4. Comparison between experimental and calculated values of the phonon parameters,
and elastic constants for a-Sn (see paper III for definitions); units of 102 dyne cm >

Parameter Input [10, 11] Output
Ram 0-540 0-528
P, 0-432 0-519
P, 0-100 0-087
P, 0-479 0-477
P, 0-057 0-041
P; 0-031 0-057
P, 0-015 0-065
P, 0-039 0-038
Py 0-012 0-004
P, 0-383 0-308
Py 0-355 0-401
Py 0-324 0-224
Cu 0-690 0-662
Ch, 0-293 0-338
Cu 0-362 0-328

necessarily be unique [17]. The elastic constants calculated by Zdetsis [16] are also
given in table 6; these differ from most other estimations of the elastic constants which
have Cy, > C, [11, 18, 19]. Figure 2 shows the phonon dispersion curves deduced
from the force constants given in table 6, and compares them with experimental
values.

The potential curves V() for all the cubic and 2D structures are smooth with a
single minimum. The lattice energies and nearest neighbour distances for these
structures are given in table 5. Cohen and co-workers have carried out pseudo
potential calculations on o-Sn and B-Sn, and on a number of high pressure forms
[20, 21]. They calculate B-Sn to be less stable than a-Sn by about 0-04eV (cf., the
expe‘riment@l value of 0-16eV) and BCC and HCP to be only 0-12¢V less stable than
a-Sn [21]. Although our a—B energy gap, 0-03 eV, is also smaller than the experimental
value, our BCC and FCC energies at 0-5eV are probably a little to high (assuming the
latter is close to the HCP energy).

Figure 3 shows the potential plotted as a function of the parameter 7 with S
optimized. S is 1 for diamond and 1-08 for B-Sn the experimental structure; at the
maximum of the curve in figure 3 (a saddle point on the tetragonal surface), S = 1-03.
Also shown on this figure is the nearest neighbour distance, which is a minimum for

Table 5. Calculated ratios of lattice energies ¥* = V/¥ (dia) and the nearest interatomic
distances r* = r/r (dia) for Sn.

V* r*
B-Sn* 0-99 1-16
SC 0-98 1-18
BCC 0-85 1-32
FCC 0-84 1-36
Hex 0-12 1-17
Sq 0-13 1-35
Tri 012 1-49

“B-Sn geometry: T (exp) = 2-592, T (calc) = 2:593, S (exp) = 1:076, S (calc) = 1-162.
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Table 6. Phonon-clastic constant optimized potential and comparison of the resulting force
constants for a-Sn with those of Zdetsis [15, 16] (units 10*dynecm").

Parameter Value Parameter Value Zdetsis
7 : 8-0 o 3-571 3-048
a, 6-0 B 2:616 2:098
DfeV 1-428 U 0-228 0:170
r./A 2-896 A —0-276 —0-397

v 0-088 0-231
o 3-374 ) 0-059 0-089
i —4-981 W 0-003 0-064
& 9:695 A 0-002 —0-190
it _ —27-182 v 0-032 —0-023
C —13-165 &5 —0-019 —0:065
Cs 70-892 i 0-040 0013
Cq 12-903 A —0-180 0016
5 10-478 u 0:025 0-:068
e —77-093 A" 0-006 0-362
Cy 12-002 v’ 0-011 0-009
iy 0-000 o —0-003 0-145

A 0:684 0-699

Gy 0-293 0-327

Cui 0-347 0-319

“¢,, Was constrained to zero as optimization with a full quartic potential gave unstable results.

the o (diamond) structure. The barrier between the o and B structures is very pro-
~ nounced, as it should be given the kinetic stabilities of the two phases. We would not
- wish to speculate on the actual mechanism for interconversion.

Both of the Sn potentials we have given have good convergence. For the phonon

optimized potential of table 6 this is not surprising, as the exponents are large, but for

« the low value of g; in table 3 we would normally expect poor convergence. However,
taking the diamond lattice energy for five shells (47 atoms) as 100%, the lattice
energies calculated on adding successive shells are 92%, 95%, 97%, 100%, 100%; the
last mentioned being for a total of eleven shells and 159 atoms. Thus, although there
is a dip in the lattice energy on adding the sixth shell, the five-shell result is essentially
the same as the converged result. This is also true of the other cubic structures; the
FCC structure for six shells (87 atoms) is almost exactly the same as for ten shells (225
atoms).

In conclusion we can say that we have a potential for Sn which reproduces the
structural data quite well and is tolerable for the phonons of %-Sn, and another
potential which is much better for the phonon data but which makes the SC structure
more stable than the diamond and which gives too high a value for T for the 3-Sn
structure.

4. Carbon

It is difficult to think of a bigger challenge for solid state potentials than to find
a common function to represent both diamond and graphite, and one which is also
applicable to other crystalline structures. The valence states of the atoms and the
nature of the electronic wavefunctions are quite different for diamond and graphite.
However, if one is looking ahead to find potentials for carbon clusters, including the
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~0.85

=0.75

Figure 3. Plot of potential energy V (in units of D, solid line) and nearest neighbour distance
r (in units of r,, broken line) as a function of 7" with S optimized.

novel fullerene structures [22], then a common functional form for all crystalline
structures would be a major step in that direction.

In our view the most successful attempt to date is that of Heggie [23]. Unfortunately,
his potential contains parameters which depend on the hybridization states of the
atoms, and these are not always directly determined from the geometry of the system.
It is not yet clear how these parameters should be defined except for diamond,
graphite and the transition structures between the two.

We have tackled the problem by treating graphite as a single 2-dimensional
hexagonal sheet. An estimate has been made of the interlayer interaction energy in
* graphite®of 0-11eV per atom [24] and, when this is added to the experimental heat of
formation of graphite, it makes the diamond structure slightly more stable than
graphite. The phonon, elastic constant and structural data on diamond have been
given in paper III [3].

Fitting the phonon and elastic constant data above was a task tackled in paper 111
and the best sum of squared deviations that can be obtained is approximately 0-1.
However, potentials satisfying these criteria give poor energies and potential curves
for the other cubic structures and the graphitic sheet has only about 75% of the lattice
energy of diamond. As in the case of Si, there was also a tendency for the 2D lattice
of squares to be unreasonably stable.

In addition to the graphite and diamond experimental data we have calculations
by Yin and Cohen [25] on the SC, BCC and FCC phases, so that the lattice energies
and nearest neighbour distance of these, relative to diamond, can be added to the
minimization routine. There are no calculations of comparable quality on the 2D
lattices of squares and triangles although there are calculations by Weinert and
co-workers [26] which predict that the 2D square lattice has a cohesive energy 62%
of that of 2D hexagons; these calculations overestimate the absolute cohesive energy
of 2D hexagons. In our calculations we have included an arbitrary constraint on the
energy of 2D squares to prevent this structure being too stable; ¥*(sq) = 0-8. We
took weighting factors of 10 for all structural data, except for ¥ *(hex) where we took
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Table 7. Potential function for C and the calculated force constants for the diamond structure
(10*dynecm ).

a, 82 « 16:077
a5 8-2 B 2:289
DfeV 7954 u 2-345
r.JA 1-468 A —1-767

v 1.954
¢ 22:085 P 1-847
¢ — 65-608 W 0-032
¢, 60-803 P 0-826
e — 69-806 y’ 0-373
C 83062 5 0-329
s 155-927 W 0-098
o 38357 ¥ —0-914
¢, — 64-847 e 0-130
Cs — 146-058 ar —0-014
Cs 27-741 V" 0-116
1o 147-137 5" 0-026

1 factor of 20 to give high priority to the diamond-graphite energy gap. This led to
two regions of exponents in which the sum of squares was minimized; a, = a; =~ 60
and a, = a; ~ 80. There was little to choose between the two but we give in this
paper the best potential in the latter region as it provides a better representation of
the phonon dispersion curves.

The potential and its force constants are given in table 7. The sum of squared
deviations is 1-2 for the phonon data and 0-4 for the structural data. Figure 4 shows
the potential energy curves for the cubic and 2D structures, and table 8 gives the
relative lattice energies and distances of these structures. The potential energy curve
of graphite is not as smooth at its minimum as we would like. The fit to the structural
data is excellent (imposed rather by our high weighting factors), but the elastic
constants ar&not as well reproduced as by our potentials of paper III. Although our
fitting to the phonon data is poorer than we obtained before, the phonon dispersion
curves for diamond, shown in figure 5, are in their overall shape rather better as the
avoided crossing of the £; and X; branches along the [g, ¢, 0] vector is more
pronounced. However, both the Raman frequency and the frequency of the TA mode
are too high.

Our potential gives excellent convergence for lattice energies and lattice distances
with added shells because the exponents are high. Note that with higher exponents we
also have larger polynomial coefficients; the two must go together because we know
that for the diamond structure the long range force constants are not negligible.

Last, there is the question of whether our potential gives a reasonable picture of
the real graphite structure, or only for the 2D hexagonal sheet. The simplest calcu-
lation is for a fully eclipsed structure and for this we find a shallow minimum at an
interplanar separation of 2:58 A with a depth of approximately 1¢eV per atom. For
hexagonal graphite, which has half the atoms eclipsed and half over the centre of a
ring, the minimum is at 2-50 A and is slightly deeper. The experimental value for the
interplanar separation is 3-:35 A and our estimated contribution to the lattice energy
only 0-1eV so our potential certainly overestimates the interplanar interaction, but
not to a wholly unreasonable extent; it is important that our potential does not
collapse the interplanar separation to chemical bond distances.
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Table 8. Comparison of input and output data for C; definitions and units as in table 2.

Parameter Input Output
Cy 10-76 10-492
Cp, 1:25 1-628
Cy 576 6:027
V* (SC) 0-64 0-68
y* (BCC) 0-42 0-42
V* (FCC) 0-38 0-38
r* (SC) 1s18 L1y
r* (BCC) 1-34 1-32
7 (FCO) 1:37 1-36
V* (hex) 0-99 0-99
V* (sq) 0-80 0-82
V* (tri) - 0-51
r* (hex) 0-91 0-91
r* (sq) - 1-08
r* (tri) - 1-28

“The experimental elastic constants are from reference [27] and the input structural data for
5C, BCC and FCC from reference [25].

5. Conclusion

The results presented in this paper are a qualified success for our method. The
qualification is that although our fit to the phonon and elastic constant data is broadly
satisfactory, except for Si and Ge it is certainly not as good as we obtained by, largely,
ignoring the data on other solid structures. The question, yet unanswered, is whether
this indicates a basic failing in our method or is just a matter of being unable to find
better solutions within our present model.

In terms of basic failings, we have the assumption that only two-body and
three-body terms need to be considered. Although this is certainly going to be wrong,
weshave no eyidence yet that it is badly wrong. Another assumption lies in our rather
simple form for the two-body term; a single parameter function in reduced units. We
found it necessary in the current work to add an exponential hard wall to the
two-body potential to prevent collapse of some structures at short interatomic distances,
and it is possible that in the future some other two-body function may be more
satisfactory. We have explored the use of the Morse function (also a single parameter
function) and found no advantage, but there are other functions that could be
considered; to introduce more parameters in the two-body term would, however,
probably be a difficult step.

The function form of the three-body term is quite flexible in its polynomial, and
we do not envisage going beyond the quartic level, but multiplying it by an exponen-
tial is only one of the methods of making the function go to zero as any internuclear
distance goes to infinity. We have examined another function used widely for mol-

ecular studies [4]
1 aQ,

which, at large distances, behaves as exp (—aQ,), but found no advantage.
Our current strategy is to see next how the method behaves for elements which do
not have diamond as their most stable phase, and potentials which reproduce the
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phonon data for FCC and BCC solids are currently being derived. Preliminary data
on Al (FCC) suggests that the fitting is if anything easier than for diamond solids.

Another line we are taking is to use the potentials derived in this paper to examine
the structures and stabilities of clusters; others are studying surface reconstruction. It
is possible that these studies will also show up basic faults in our model, but to date
we are optimistic.
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University Research Fellowship; BRE has received financial support from SERC and
from the German National Scholarship Foundation. We thank Dr Al-Derzi for help
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