

PAPER View Article Online
View Journal | View Issue



Cite this: Nanoscale, 2017, 9, 4550

# Planar B<sub>38</sub><sup>-</sup> and B<sub>37</sub><sup>-</sup> clusters with a double-hexagonal vacancy: molecular motifs for borophenes†

Qiang Chen, a,c,d Wen-Juan Tian, b Lin-Yan Feng, a Hai-Gang Lu, a Yue-Wen Mu, a Hua-Jin Zhai, \*a Si-Dian Li\*a and Lai-Sheng Wang\*b

Boron clusters have been found to exhibit a variety of interesting electronic, structural, and bonding properties. Of particular interest are the recent discoveries of the 2D hexagonal  $B_{36}^{-/0}$  which led to the concept of borophenes and the 3D fullerene-like  $B_{40}^{-/0}$  which marked the onset of borospherene chemistry. Here, we present a joint photoelectron spectroscopic and first-principles study of  $B_{37}^{-}$  and  $B_{38}^{-}$ , which are in the transition size range between the 2D borophene-type clusters and the 3D borospherenes. These two clusters are found to possess highly stable 2D global-minimum structures consisting of a double-hexagonal vacancy. Detailed bonding analyses reveal that both  $B_{37}^{-}$  and  $B_{38}^{-}$  are allboron analogues of coronene ( $C_{24}H_{12}$ ) with a unique delocalized  $\pi$  system, featuring dual  $\pi$  aromaticity. These clusters with double hexagonal vacancies can be viewed as molecular motifs for the  $\chi$ 3-borophene which is the most stable form of borophenes recently synthesized on an Ag(111) substrate.

Received 26th January 2017, Accepted 8th March 2017 DOI: 10.1039/c7nr00641a

rsc.li/nanoscale

## 1. Introduction

Boron has a number of bulk allotropes consisting of three-dimensional (3D) cage-like structural units to compensate its electron deficiency. However, early theoretical studies suggested that small boron clusters with less than 14 atoms prefer planar or quasi-planar (2D) structures. During the past decade, the structures and bonding of size-selected boron clusters ( $B_n^-$ ) have been systematically investigated using photoelectron spectroscopy (PES) and first-principles theory calculations. This body of work has established the 2D global minima for  $B_n^-$  over a large size range up to n=36 thus far. Bonding analyses show that these 2D clusters are governed by delocalized  $\sigma$  and  $\pi$  bonding. Most interestingly, the  $\pi$  bonding in all 2D boron clusters can be shown to be analogous to that in polycyclic aromatic hydrocarbons (PAHs).  $^{11,17-23,24}$  A

joint ion mobility and density functional theory (DFT) study

The 2D boron clusters exhibit a wide range of structural patterns consisting of B3 triangles and tetragonal, pentagonal, or hexagonal vacancies (holes) as "defects" in an otherwise triangular 2D lattice.<sup>23</sup> The defect size increases with the cluster size from tetragonal to hexagonal. The B26 cluster has been shown recently to be the smallest boron cluster with a hexagonal hole, 18c while the global minima of B<sub>36</sub>-/0 have been shown earlier to contain a perfect hexagonal vacancy, leading to the concept of borophenes and providing the first indirect experimental evidence for the viability of monolayered borons with hexagonal vacancies.<sup>20</sup> The B<sub>35</sub> cluster was subsequently found to possess a double-hexagonal vacancy (DHV) by simply removing a hexa-coordinate B atom from the B<sub>36</sub>- cluster. <sup>21</sup> More intriguingly, B<sub>35</sub> was shown to be an even more flexible motif for borophenes with different arrangements of the hexagonal holes. Subsequently, borophenes were synthesized on Ag(111) substrates, <sup>27,28</sup> as suggested computationally. <sup>29,30</sup> In particular, the observed most stable x3-borophene has a holedensity of  $\eta = 1/5$ , consisting of rows of adjacent hexagonal holes connected by zigzag boron double chains (BDCs). 28,31

The discovery of the fullerene-like  $D_{2d}$   $B_{40}^{-/0}$  cages, named borospherenes,<sup>22</sup> in 2014 represents another landmark in

on cationic  $B_n^+$  clusters with n up to 25 revealed a structural transition from 2D to tubular-type structures at n = 16, 25,26 even though tubular-type structures have not been observed for any anionic  $B_n^-$  clusters. 23

The 2D boron clusters exhibit a wide range of structural pat-

<sup>&</sup>lt;sup>a</sup>Nanocluster Laboratory, Institute of Molecular Science, Shanxi University,
Taiyuan 030006, China. E-mail: hj.zhai@sxu.edu.cn, lisidian@sxu.edu.cn

<sup>b</sup>Department of Chemistry, Brown University, Providence, Phodo Island 02912

<sup>&</sup>lt;sup>b</sup>Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA. E-mail: lai-sheng\_wang@brown.edu

<sup>&</sup>lt;sup>c</sup>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

<sup>&</sup>lt;sup>d</sup>Institute of Materials Science, Xinzhou Teachers' University, Xinzhou 034000, China †Electronic supplementary information (ESI) available. See DOI: 10.1039/ c7nr00641a

the investigation of size-selected boron clusters. The global minimum of  ${\rm B_{40}}^-$  was found to be a 2D structure with a DHV, whereas the  $D_{2d}$   $B_{40}^-$  borospherene was slightly higher in energy. However, for neutral  $B_{40}$  the  $D_{2d}$  borospherene cage consisting of twelve interwoven BDCs was overwhelmingly the global minimum. The B<sub>39</sub> cluster was subsequently found to consist of two nearly degenerate, axially chiral C3 and C2 borospherene isomers which are also dominated by interwoven BDCs.32

An interesting question is what are the structures of  $B_{37}^{-}$ and B<sub>38</sub>-? These two clusters are in the transition size range between the borophene-type 2D structures and the 3D borospherenes. A previous DFT calculation suggested that neutral B<sub>38</sub> possesses a borospherene cage global minimum with a low-lying 2D isomer consisting of a DHV.33 A subsequent comment at higher levels of theory showed that the 2D and 3D structures of B<sub>38</sub> are nearly degenerate with the 2D structure slightly lower in energy.<sup>34</sup> However, there have been no studies on the  $B_{38}^-$  anion or on  $B_{37}^{-/0}$ . The two missing clusters are important to understand the structural transitions and there may be a competition between 2D and 3D isomers.

We have undertaken a joint PES and quantum chemical study on the B<sub>37</sub> and B<sub>38</sub> clusters in the current article. The PES spectra for both clusters display relatively well-resolved spectral features. Global minimum searches revealed that both  $B_{37}^-$  and  $B_{38}^-$  consist of 2D structures with a DHV. The 3D cage isomers are significantly higher in energy and were not present experimentally. Chemical bonding analyses show that the 2D B<sub>38</sub> and B<sub>37</sub> are all-boron analogues of coronene  $(C_{24}H_{12})$ , featuring unique dual  $\pi$  aromaticity.

#### 2. Methods

#### **Experimental methods**

The experiments were performed using a magnetic-bottle PES apparatus equipped with a laser vaporization cluster source, details of which can be found elsewhere. 23,35 Briefly, boron clusters were produced by focusing a laser beam on a 10Benriched disk target. The laser-induced plasma was cooled by a high pressure He carrier gas seeded with 5% Ar. The nascent clusters were entrained by the carrier gas and underwent a supersonic expansion to produce a cold cluster beam (about 200 K).<sup>23</sup> Negatively charged clusters were extracted perpendicularly from the collimated cluster beam and analyzed using a time-of-flight mass spectrometer. The B<sub>38</sub> and B<sub>37</sub> clusters of current interest were mass-selected and decelerated before intercepted by a detachment Photodetachment experiments were performed using the 193 nm (6.424 eV) radiation from an ArF excimer laser. Photoelectrons were collected at nearly 100% efficiency using a magnetic-bottle and analyzed in a 3.5 m long electron flight tube. The photoelectron spectra were calibrated using the known spectrum of Au-. The energy resolution of the instrument was  $\Delta E_k/E_k \approx 2.5\%$ , that is, ~25 meV for 1 eV kinetic energy electrons.

#### 2.2. Computational methods

Global-minimum searches were first performed for B<sub>38</sub><sup>-</sup> using both the minima-hopping algorithm36 and the TGmin code, 20,37 in combination with manual structural constructions based on the known low-lying isomers of B35, B36, and  $B_{40}^{-20-22}$  On the basis of the structural information of  $B_{38}^{-}$ , only the minima-hopping approach was utilized to search for the global minimum of  $B_{37}^{-}$ . The minima-hopping searches for B<sub>38</sub> and B<sub>37</sub> were done using the BIGDFT electronic structure code<sup>38</sup> employing a systematic wavelet basis in combination with pseudopotentials and the standard local-density approximation (LDA)<sup>39</sup> and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional.40 For each cluster anion, six independent minima-hopping runs were performed, starting from six different low-lying structures. About 1700 and 2200 stationary points were probed for B<sub>38</sub><sup>-</sup> and B<sub>37</sub><sup>-</sup>, respectively. TGmin searches were done for B<sub>38</sub> to check the minimahopping results. The TGmin code was implemented in the CP2K program<sup>41</sup> and employed the DFT formalism with the PBE exchange-correlation functionals<sup>40</sup> and the Goedecker-Teter-Hutter pseudopotential<sup>39</sup> with the associated double-ζ valence plus polarization (DZVP) basis set.42 With more than 1000 stationary points probed, the TGmin searches yielded the same global minimum for B38, as the minima-

The low-lying isomers of  $B_{38}^-$  and  $B_{37}^-$  were then fully reoptimized at the PBE0/6-311+G\* level, 43,44 which has proved to be a reliable method for boron clusters in this size regime. Vibrational frequencies were checked to ensure that the reported isomers are true minima. We calculated the vertical detachment energies (VDEs) of the B38 and B37 global minima using the time-dependent DFT method (TD-PBE0/ 6-311+G\*). $^{45}$  The global minimum of  $B_{38}^{-}$  was found to be a doublet  $(C_s, {}^2A'')$  with an unpaired electron. Electron detachment from the <sup>2</sup>A" state produced two almost degenerate neutral states: a triplet  $B_{38}$  ( $^3A''$ ) and an open-shell singlet  $B_{38}$ (<sup>1</sup>A"). Thus, the first two VDEs of B<sub>38</sub> were calculated as the energy differences between the anion ground-state (2A") and the neutral triplet <sup>3</sup>A" and the open-shell singlet <sup>1</sup>A" states at the anion ground-state geometry, respectively. Higher VDEs were obtained by adding the singlet and triplet excitation energies of the neutral to the first two VDEs. One-electron detachment from the closed-shell B<sub>37</sub> generates doublet neutral states only, yielding fewer detachment channels.

All calculations were performed using the Gaussian 09 package. 46 Canonical molecular orbitals (CMOs) and the adaptive natural density partitioning (AdNDP) method<sup>47</sup> were employed to analyze the chemical bonding. Orbital visualization was done using Molekel. 48

## **Experimental results**

The photoelectron spectra of  $B_{38}^-$  and  $B_{37}^-$  at 193 nm are shown in Fig. 1, along with the simulated spectra (vide infra). Spectral features are labeled with letters (X, A, B, etc.). All

Paper Nanoscale

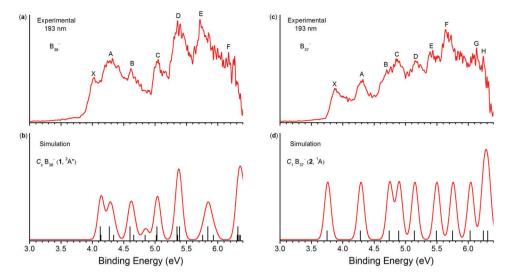



Fig. 1 Experimental photoelectron spectra of  $B_{38}^-$  (a) and  $B_{37}^-$  (c) at 193 nm (6.424 eV), compared with the simulated spectra of the global minimum  $C_s$   $B_{38}^-$  (1,  $^2$ A") (b) and  $C_1$   $B_{37}^-$  (2,  $^1$ A) (d). The simulated spectra were recorded at the TD-PBE0/6-311+G\* level by fitting the calculated VDEs (vertical bars) with unit-area Gaussian functions of 0.05 eV half-width. In (b), the longer bars are for triplet final states and the shorter bars for the singlet final states.

experimental and theoretical VDEs and adiabatic detachment energies (ADEs) are summarized in Table S1 in the ESI.†

## 3.1. The photoelectron spectrum of B<sub>38</sub>

The spectrum of  $B_{38}^-$  (Fig. 1a) reveals six well-spaced bands (X, A–E), as well as continuous signals above 6 eV, labeled as F for the sake of discussion. The first VDE was evaluated from the maximum of band X to be 4.02 eV. Since no vibrational structures were resolved for this band, the ADE was estimated by drawing a straight line along its leading edge and then adding the instrumental resolution to the intersection with the binding energy axis. The ADE of  $B_{38}^-$  so obtained is 3.91  $\pm$  0.05 eV, which also represents the electron affinity of neutral  $B_{38}$ .

Band A, centered at  $\sim$ 4.3 eV, is relatively broad and partially overlaps with band X. Bands B (4.62 eV) and C (5.04 eV) are sharper, followed by two intense and broader bands, D (5.39 eV) and E (5.74 eV). Neutral  $B_{38}$  has an even number of valance electrons. However, the intensity of band X is quite large relative to band A, and there exists only a small gap ( $\sim$ 0.3 eV) between them. The ADE of  $B_{38}^-$  is also unusually large, and breaks the even–odd alternation as a function of size.<sup>23</sup> All these observations suggest that the ground-state of the neutral  $B_{38}$  final state upon electron detachment is probably not a closed-shell species.

## 3.2. The photoelectron spectrum of $B_{37}^-$

The spectrum of  $B_{37}^-$  was well resolved and nine spectral bands could be identified and labeled as X, A–H in Fig. 1c. The peak maximum of band X defines the ground-state VDE of 3.88 eV. The ADE or electron affinity of  $B_{37}$  was evaluated from the onset of band X to be 3.76  $\pm$  0.05 eV. The VDEs for bands A–H could all be readily measured from their band maxima and are given in Table S1.†

## 4. Theoretical results

The global minimum structures of  $B_{38}^-$  (1,  $C_s$ ,  $^2A''$ ) and  $B_{37}^-$  (2,  $C_1$ ,  $^1A$ ) are shown in Fig. 2. Alternative low-lying isomers within 1.5 eV are given in Fig. S1 and S2,† for  $B_{38}^-$  and  $B_{37}^-$ , respectively. Their configurational energy spectra are given in Fig. 3 with selected structures indicated.

## 4.1. The global minimum and low-lying isomers of B<sub>38</sub>

The cohesive energy trend for  $B_n$  (n=7-40) presented in the previous study on the  $B_{40}^-$  borospherene suggested a 2D to 3D cage structural transition for neutral  $B_n$  clusters at  $n\approx 38.^{22}$  A subsequent DFT calculation showed that the  $B_{38}$  cluster has a  $D_{2h}$  cage global minimum with a low-lying 2D isomer consisting of a DHV. The accurate calculations found that the 2D structure was slightly lower in energy than the  $D_{2h}$   $B_{38}$  cage structure. The current global minimum searches, in conjunction with full structural optimizations at PBE0/6-311+G\*, found the same 2D isomer 1 ( $C_8$ ,  $^2$ A") as the overwhelming global minimum for  $B_{38}^-$ , as shown in Fig. 2 and 3a. The

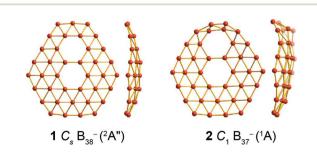



Fig. 2 The top and side views of the global minima of  $B_{38}^-$  and  $B_{37}^-$  at the PBE0/6-311+G\* level.

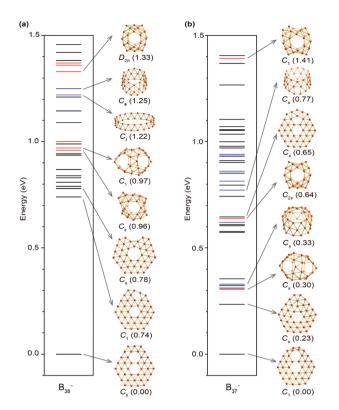



Fig. 3 The configurational energy spectra of (a)  $B_{38}^-$  and (b)  $B_{37}^-$  at the PBEO/6-311+G\* level. Black, red, violet, and blue horizontal lines represent quasi-planar, cage-like, double-, and triple-ring tubular structures, respectively. Relative energies are given in eV.

second lowest-lying isomer, which is also 2D  $(C_1)$ , lies 0.74 eV higher in energy.

The global minimum of B<sub>38</sub> can be derived from the B<sub>35</sub> cluster by simply adding three B atoms to its thinner edge (the top row in 1), retaining the DHV first observed in the global minimum of B<sub>35</sub>-.21 It is similar to the low-lying 2D isomer of neutral  $B_{38}$  ( $C_s$ ,  $^1A'$ ), which was found to be nearly degenerate with the  $D_{2h}$  cage isomer.<sup>33</sup> Surprisingly, the cage-like  $B_{38}^ (D_{2h}, {}^{2}B_{2u})$  lies 1.33 eV higher than the 2D global minimum (Fig. 3a). In fact, the first nine isomers above the global minimum are all 2D with one or two polygonal vacancies (Fig. 3a and S1†), with the nearest isomer being at least 0.74 eV higher in energy. The stabilization of the 2D structure in the anion is a result of the delocalization of the additional electron, whereas the large HOMO-LUMO gap in the  $D_{2h}$  cage isomer means that the additional electron in the anion would occupy a much higher energy orbital, similar to the case of  $B_{40}^{-22,23}$  Double- and triple-ring tubular-type isomers for  $B_{38}^{-1}$ are at least 1.2 eV above the 2D global minimum.

## 4.2. The global minimum and low-lying isomers of B<sub>37</sub>

The spectral pattern of B<sub>37</sub> was somewhat similar to that of B<sub>38</sub> (Fig. 1) and both have relatively high ADEs, suggesting that they might have similar structures. Hence, we built the initial structures of B<sub>37</sub> by removing one B atom from the shorter edge of  $C_s$   $B_{38}^-$  (1) or adding two B atoms to the

thinner edge of B<sub>35</sub><sup>-</sup>. Full structural optimization at PBE0 led to the 2D isomer of  $C_1$   $B_{37}^-$  (2,  $^1$ A) as shown in Fig. 2. Because there were only two B atoms in the top row, significant local distortions were found upon optimization. The  $C_1$  isomer was subsequently located as the global minimum for B<sub>37</sub> (Fig. 3 and S2†) from minima-hopping searches.

As shown in Fig. 3b and S2,† the second lowest-lying isomer is also 2D  $(C_s, {}^1A')$  at 0.23 eV above the global minimum. This isomer contains a hexagonal vacancy and can be viewed as adding a B atom to the edge of the hexagonal  ${\rm B_{36}}^-$  cluster<sup>20</sup> with some major local rearrangement. The third isomer  $C_8 B_{37}^{-}$  (<sup>1</sup>A') at 0.30 eV is cage-like, similar to the metalloborospherene Ca $@B_{37}^{-}$ . The higher energy isomers of  $B_{37}^{-}$ display both 2D and 3D structures, which are generally similar to those of  $B_{38}^-$  (Fig. 3).

## Comparison between experiment and theory

## 5.1. B<sub>38</sub>

Since the global minimum 2D structure with a DHV for B38  $(1, C_s, {}^2A'')$  is overwhelmingly favored from our global search, no higher energy isomers need to be considered in comparison with the experimental spectrum. The calculated VDEs of 1 at TD-PBE0 are compared with the experimental data in Table S1<sup>†</sup> and the simulated spectrum is compared with the experiment in Fig. 1b. The electronic structures of B<sub>38</sub><sup>-</sup> and  $B_{38}$  are complicated, because of the open-shell nature of  $B_{38}$ , as hinted by the photoelectron spectrum (Fig. 1a).

The spin-polarized orbital energy order of 1 is shown in Fig. S3.† The unpaired CMO is the  $\alpha$ -26a" (shaded in pink), whereas the highest occupied  $\alpha$  and  $\beta$  spins both belong to the 32a' CMO, with little spin-polarization (within 0.001 eV). Consequently, upon detaching an electron from the highest a and β spins, we can reach both a triplet and a singlet final state, which are expected to be nearly degenerate competing for the ground electronic state of neutral B38. At the PBE0 level, the first detachment channel is from  $\beta$ -32a' with a calculated VDE of 4.125 eV for the triplet neutral final state (<sup>3</sup>A"), whereas the detachment of α-32a' gives a computed VDE of 4.126 eV for an open-shell singlet final state (<sup>1</sup>A"). Both values are close to each other and are in good agreement with band X (experimental VDE: 4.02 eV). The calculated ADE between 1  $(C_s, {}^2A'')$  and  $C_s$  B<sub>38</sub>  $({}^3A'')$  is 4.06 eV, consistent with the experimental ADE of 3.91 eV. Band A at ~4.3 eV corresponds to detachments from  $\beta$ -31a' and  $\alpha$ -26a" which lead to a triplet (<sup>3</sup>A') and a singlet (<sup>1</sup>A") final state, respectively. The calculated VDEs (4.27 and 4.34 eV, respectively) are also close to each other and are in good agreement with band A. The calculated VDEs for higher binding energy detachment channels are also in good agreement with the experimental bands (B, C, D, and E), as can be seen in Fig. 1b and Table S1.† Overall, the agreement between the simulated spectral pattern and the experimental spectrum is quite gratifying, considering the openshell nature of both B<sub>38</sub><sup>-</sup> and its neutral.

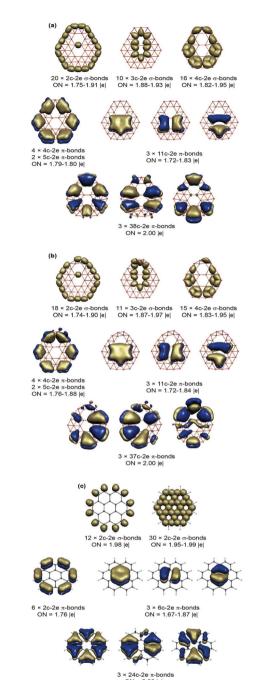
Paper Nanoscale

#### 5.2. $B_{37}^{-}$

Since  $B_{37}^-$  has a closed-shell configuration, electron detachment from each CMO produces a doublet final state, giving rise to much fewer detachment channels relative to the openshell  $B_{38}^-$ . The simulated spectrum and the calculated VDEs from the  $B_{37}^-$  global minimum are compared with the experiment in Fig. 1d and Table S1,† respectively. The theoretical first VDE from the HOMO (56a) is 3.75 eV, which is in good agreement with band X (VDE: 3.88 eV). The calculated ADE (3.67 eV) is also in good agreement with the experimental value of 3.76 eV. There is an excellent correspondence between all the higher detachment channels and the observed PES bands (Fig. 1c and d). The level of agreement between the theory and experiment is remarkable, confirming the 2D structure with a DHV (2) as the global minimum of  $B_{37}^-$ .

## 6. Structures and chemical bonding

# 6.1. Quasi-planar boron clusters with a double-hexagonal vacancy


The global minimum of  $B_{38}^-$  (1) containing a DHV is directly related to the observed  $B_{35}^-$  (ref. 21) by adding a three-atom row on the top of  $B_{35}^-$  (Fig. 2), yielding the elongated and bowl-shaped 2D structure (length: 9.9 Å; width: 9.55 Å) with six apexes. The  $B_{38}^-$  cluster can also be described as consisting of three cyclic rings of B atoms: the inner  $B_6$  ring, a middle  $B_{13}$  ring, and an external  $B_{19}$  ring. The peripheral B–B bond lengths in  $B_{38}^-$  range from 1.58 to 1.66 Å, whereas the interior B–B bond lengths range from 1.64 to 1.84 Å. The shortest peripheral B–B bonds are associated with the six apex atoms. The shorter peripheral B–B bonds relative to the interior B–B bonds cause the bowl-shape of  $B_{38}^-$  with an out-of-plane distortion of 1.45 Å (1, Fig. 2).

The global minimum of  $B_{37}^-$  (2) can be obtained by either adding two B atoms to the top of  $B_{35}^-$  or removing a B atom from the top row of  $B_{38}^-$  with a significant local distortion. Thus,  $B_{37}^-$  differs from  $B_{38}^-$  by one less peripheral B–B bond. The out-of-plane distortion of  $B_{37}^-$  is increased to 2.31 Å.

Starting from  $B_{35}^-$ , the DHV seems to become a prevalent structural feature in 2D boron clusters. Even though the  $B_{40}$  borospherene cage is overwhelmingly the global minimum in the neutral,  $^{22}$  the global minimum of  $B_{40}^-$  is in fact a 2D structure, which can be viewed as adding two B atoms on the top of  $B_{38}^-$ . It is remarkable that for both  $B_{38}^-$  and  $B_{37}^-$  the global minima with the DHV are significantly favored without competing lowlying isomers. It should be pointed out that, for smaller boron clusters in the size range from  $B_{24}^-$  to  $B_{29}^-$ , competing lowlying isomers were observed in each case. It seems that the hexagonal vacancy, in particular the DHV, plays a major role in stabilizing the 2D structures for larger boron clusters.

## 6.2. Chemical bonding in $B_{38}^-$ and $B_{37}^-$ : boron analogues of coronene

The chemical bonding in  $B_{38}^-$  and  $B_{37}^-$  has been analyzed using the AdNDP method (Fig. 4). For  $B_{38}^-$ , we used its



**Fig. 4** Comparison of the AdNDP bonding patterns of (a)  $C_{\rm s}$   $B_{\rm 38}^{2-}$ , (b)  $C_{\rm 1}$   $B_{\rm 37}^{-}$ , and (c) coronene ( $D_{\rm 6h}$   $C_{\rm 24}H_{\rm 12}$ ). Occupation numbers (ONs) are indicated.

closed-shell dianion  $B_{38}^{2-}$  with 116 valence electrons (58 electron pairs) for the purpose of bonding analyses. We found that bonding in  $B_{38}^{2-}$  is similar to that in  $B_{35}^{-}$ . The external  $B_{19}$  ring and the inner  $B_2$  bridge between the two hexagonal holes are described by 20 2c–2e  $\sigma$  bonds (Fig. 4a). The bonding between the DHV and the surrounding boron atoms is via 10 3c–2e  $\sigma$  bonds, whereas the bonding between the external  $B_{19}$  ring and the middle  $B_{13}$  ring is via 16 4c–2e  $\sigma$  bonds.

Nanoscale Paper

There are three types of  $\pi$  bonds in  $B_{38}^{2-}$ . We found six multi-center (four 4c-2e and two 5c-2e)  $\pi$  bonds around the six apex sites mainly involving bonding between the external B<sub>19</sub> ring and the middle B<sub>13</sub> ring. The inner B<sub>6</sub> ring involves in three 11c-2e  $\pi$  bonds, which are reminiscent of the  $\pi$  bonds in benzene. We also found three completely delocalized 38c-2e  $\pi$ bonds. The inner 11c–2e  $\pi$  sextet and the three 38c–2e  $\pi$  bonds form two aromatic systems conforming to the (4n + 2) Huckel rule (n = 1), rendering dual  $\pi$  aromaticity to both  $C_s$   $B_{38}^{2-}$  and the parent  $B_{38}^-$  (the missing electron in  $C_s$   $B_{38}^-$  is from a  $\sigma$ orbital, Fig. S3†).

The bonding in  $B_{37}^{-}$  is very similar to that in  $B_{38}^{2-}$ . Except the fact that  $B_{37}^{-}$  has four fewer electrons than  $B_{38}^{2-}$  (all in the  $\sigma$  framework), the  $\pi$  bonding in the two systems is nearly identical according to the AdNDP analyses (Fig. 4b). Hence, B<sub>37</sub> can also be considered to possess dual  $\pi$  aromaticity. More interestingly, we found that the  $\pi$  bonding patterns in both  $B_{37}^{-}$  and  $B_{38}^{2-}$  are very similar to that in the polycyclic aromatic coronene ( $C_{24}H_{12}$ ) (Fig. 4c). Comparisons of their  $\pi$ CMOs are presented in Fig. S4† which provide further evidence to support this analogy. Thus, B<sub>37</sub> and B<sub>38</sub> can be considered as all-boron analogues of coronene C24H12, continuing the hydrocarbon analogy of all 2D boron clusters studied thus

#### 6.3. $B_{38}^-$ and $B_{37}^-$ as motifs for borophenes

Since the first successful characterization of graphene, there has been intense interest in finding new 2D materials. Even though boron does not have a layered allotrope, single-walled boron nanotubes were suggested, using boron sheets made of a triangular lattice. 50,51 The triangular lattice can be viewed by filling a boron atom to the hexagons of a graphene-like structure. However, such a triangular lattice is too electron-rich and undergoes distortion to a rippled boron layer. 52-55 DFT calculations suggested that a triangular lattice with periodic hexagonal vacancies would be planar and would be more stable than a close-packed triangular lattice, more suitable for the construction of boron nanotubes. 56,57 Further DFT studies predicted many different monolayer borons with different hole patterns<sup>58,59</sup> and suggested that they could be formed on inert substrates, such as silver.  $^{29,30}$  The discovery of the  $C_{6v}$  B<sub>36</sub> cluster with a hexagonal vacancy provided the first indirect experimental evidence of the viability of atomically-thin borons and inspired the proposal of "borophene" to designate the potentially new class of 2D materials.20 Subsequently, the B35 cluster with a DHV was found to be an even more flexible motif for borophenes with different hole patterns and densities.<sup>21</sup> Recently, two groups have independently prepared borophenes on silver substrates. 27,28 Even though the atomic resolution was not achieved in the STM characterization, the most stable structure seemed to be the so-called x3-borophene, in which two columns of adjacent hexagonal vacancies are connected by zigzag BDCs, 28,31 suggesting the importance of BDCs in stabilizing both 2D borophenes and 0D borospherenes.<sup>22,32</sup>

The DHV in B<sub>38</sub> and B<sub>37</sub> is reminiscent of the most stable  $\chi 3$ -borophene and can be viewed as its motifs. Fig. 5

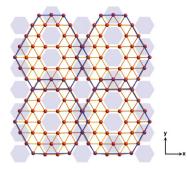



Fig. 5 Schematic of χ<sub>3</sub>-borophene constructed by the 2D B<sub>38</sub><sup>-</sup> motif (illustrated by blue solid lines). Shaded blue hexagons represent the hexagonal vacancies in  $\chi_3$ -borophene.

illustrates the relationship between  $B_{38}^-$  and the  $\chi 3$ -borophene. One can fuse four adjacent B<sub>38</sub> units to form a hexagonal vacancy between them by connecting two B<sub>38</sub> units head-to-tail in the vertical direction, sharing a B7 doublechain and a B4 rhombus between the two neighboring B38 units in the horizontal direction. On the basis of this 2D pattern, one can further extend the molecular sheet to  $\chi$ 3borophene by removing some hexacoordinate capping B atoms in the vertical direction to form the continuous zigzag BDCs, as shown by the rows of the adjacent hexagonal vacancies in the background. The present discussion is a simple model illustrating the connection of the 2D boron clusters with a DHV to borophenes. It is conceivable that with increasing size 2D boron clusters with more than two adjacent hexagonal vacancies may be possible. Hence, borophenes may be viewed as extended 2D cluster species. Such clusters have been considered computationally.<sup>60,61</sup> It would be interesting to test if such clusters would exist experimentally in larger boron clusters. The existence of such large 2D boron clusters may provide information about the feasibility of free-standing borophenes.

## Conclusions

The B<sub>38</sub> and B<sub>37</sub> clusters have been produced in the gas phase and characterized using anion photoelectron spectroscopy and theoretical calculations. The PE spectra were sufficiently well resolved and indicated that a single dominant isomer was the spectral carrier in each case. The most stable structures of B<sub>38</sub> and B<sub>37</sub> are established by comparisons of the experimental and computational data. Both clusters are found to adopt quasi-planar structures with a double-hexagonal vacancy, which seems to impart special stability to the large 2D boron clusters. Bonding analyses reveal that they are all-boron analogues of coronene, featuring unique dual  $\pi$ aromaticity. Such boron clusters with adjacent hexagonal vacancies may be used as structural motifs for χ3-borophenes, featuring rows of adjacent hexagonal vacancies connected by zigzag BDCs.

**Paper** Nanoscale

## Acknowledgements

The experimental work was supported by the US National Science Foundation (CHE-1632813 to L. S. W.). We thank Dr Wei-Li Li and Dr C. Romanescu for experimental assistance. The theoretical work was supported by the National Natural Science Foundation of China (21373130 and 21573138), the National Key Basic Research Special Foundations (2011CB932401), and the State Key Laboratory of Quantum Optics and Quantum Optics Devices (KF201402).

## Notes and references

- 1 B. Albert and H. Hillebrecht, Angew. Chem., Int. Ed., 2009, 48, 8640.
- 2 (a) R. Kawai and J. H. Weare, J. Chem. Phys., 1991, 95, 1151; (b) R. Kawai and J. H. Weare, Chem. Phys. Lett., 1992, 191,
- 3 V. Bonacic-Koutecky, P. Fantucci and J. Koutecky, Chem. Rev., 1991, 91, 1035.
- 4 H. Kato, K. Yamashita and K. Morokuma, Chem. Phys. Lett., 1992, 190, 361.
- 5 (a) I. Boustani, Int. J. Quantum Chem., 1994, 52, 1081; (b) I. Boustani, Phys. Rev. B: Condens. Matter, 1997, 55, 16426.
- 6 A. Ricca and C. W. Bauschlicher, Chem. Phys., 1996, 208,
- 7 F. L. Gu, X. Yang, A. C. Tang, H. Jiao and P. v. R. Schleyer, J. Comput. Chem., 1998, 19, 203.
- 8 J. E. Fowler and J. M. Ugalde, J. Phys. Chem. A, 2000, 104,
- 9 H. J. Zhai, L. S. Wang, A. N. Alexandrova and A. I. Boldyrev, J. Chem. Phys., 2002, 117, 7917.
- 10 (a) H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev and L. S. Wang, Angew. Chem., Int. Ed., 2003, 42, 6004; (b) L. L. Pan, J. Li and L. S. Wang, J. Chem. Phys., 2008, 129, 024302.
- 11 H. J. Zhai, B. Kiran, J. Li and L. S. Wang, Nat. Mater., 2003, 2,827.
- 12 B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng and L. S. Wang, Proc. Natl. Acad. Sci. U. S. A., 2005, 102,
- 13 A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai and L. S. Wang, Coord. Chem. Rev., 2006, 250, 2811.
- 14 A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev and L. S. Wang, J. Am. Chem. Soc., 2008, 130, 7244.
- 15 (a) W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang and A. I. Boldyrev, Nat. Chem., 2010, 2, 202; (b) A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev and L. S. Wang, J. Chem. Phys., 2011, 134, 224304.
- 16 (a) A. P. Sergeeva, Z. A. Piazza, C. Romanescu, W. L. Li, A. I. Boldyrev and L. S. Wang, J. Am. Chem. Soc., 2012, 134, 18065; (b) Z. A. Piazza, W. L. Li, C. Romanescu, A. P. Sergeeva, L. S. Wang and A. I. Boldyrev, J. Chem. Phys., 2012, 136, 104310.

- 17 A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang and A. I. Boldyrev, Acc. Chem. Res., 2014, 47, 1349.
- 18 (a) I. A. Popov, Z. A. Piazza, W. L. Li, L. S. Wang and A. I. Boldyrev, J. Chem. Phys., 2013, 139, 144307; (b) Z. A. Piazza, I. A. Popov, W. L. Li, R. Pal, X. C. Zeng, A. I. Boldyrev and L. S. Wang, J. Chem. Phys., 2014, 141, 034303; (c) X. M. Luo, T. Jian, L. J. Cheng, W. L. Li, Q. Chen, R. Li, H. J. Zhai, S. D. Li, A. I. Boldyrev and L. S. Wang, Chem. Phys. Lett., 2016, DOI: 10.1016/j. cplett.2016.12.051; (d) W. L. Li, R. Pal, Z. A. Piazza, X. C. Zeng and L. S. Wang, J. Chem. Phys., 2015, 142, 204305; (e) Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li and L. S. Wang, J. Chem. Phys., 2016, 144, 064307; (f) H. R. Li, T. Jian, W. L. Li, C. Q. Miao, Y. J. Wang, Q. Chen, X. M. Luo, K. Wang, H. J. Zhai, S. D. Li and L. S. Wang, Phys. Chem. Chem. Phys., 2016, 18, 29147.
- 19 W. L. Li, Y. F. Zhao, H. S. Hu, J. Li and L. S. Wang, Angew. Chem., Int. Ed., 2014, 53, 5540.
- 20 Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li and L. S. Wang, Nat. Commun., 2014, 5, 3113.
- 21 W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li and L. S. Wang, J. Am. Chem. Soc., 2014, 136, 12257.
- 22 H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li and L. S. Wang, Nat. Chem., 2014, 6, 727.
- 23 L. S. Wang, Int. Rev. Phys. Chem., 2016, 35, 69.
- 24 A. I. Boldyrev and L. S. Wang, Phys. Chem. Chem. Phys., 2016, 18, 11589.
- 25 E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes and R. Ahlrichs, Angew. Chem., Int. Ed., 2007, 46, 8503.
- 26 C. Romanescu, D. J. Harding, A. Fielicke and L. S. Wang, J. Chem. Phys., 2012, 137, 014317.
- 27 A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam and N. P. Guisinger, Science, 2015, 350, 1513.
- 28 B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen and K. Wu, *Nat. Chem.*, 2016, **8**, 563.
- 29 (a) Y. Liu, E. S. Penev and B. I. Yakobson, Angew. Chem., Int. Ed., 2013, 52, 3156; (b) Z. Zhang, Y. Yang, G. Gao and B. I. Yakobson, Angew. Chem., Int. Ed., 2015, 54, 13022.
- 30 H. Liu, J. Gao and J. Zhao, Sci. Rep., 2013, 3, 3238.
- 31 (a) S. Xu, Y. Zhao, J. Liao, X. Yang and H. Xu, Nano Res., 2016, 9, 2616; (b) Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam and B. I. Yakobson, Nano Lett., 2016, 16, 6622.
- 32 Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li and L. S. Wang, ACS Nano, 2015, 9, 754.
- 33 J. Lv, Y. Wang, L. Zhu and Y. Ma, Nanoscale, 2014, 6, 11692.
- 34 T. B. Tai and M. T. Nguyen, *Nanoscale*, 2015, 7, 3316.

- 35 L. S. Wang, H. S. Cheng and J. Fan, J. Chem. Phys., 1995, 102, 9480.
- 36 (a) S. Goedecker, J. Chem. Phys., 2004, 120, 9911; (b) S. Goedecker, W. Hellmann and T. Lenosky, Phys. Rev. Lett., 2005, 95, 055501.
- 37 X. Chen, Y. F. Zhao, L. S. Wang and J. Li, Comput. Theor. Chem, 2007, DOI: 10.1016/j.comptc.2016.12.028.
- 38 L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman and R. Schneider, J. Chem. Phys., 2008, 129, 014109.
- 39 S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B: Condens. Matter, 1996, 54, 1703.
- 40 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 41 J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comput. Phys. Commun., 2005, **167**, 103.
- 42 J. VandeVondele and J. Hutter, J. Chem. Phys., 2007, 127, 114105.
- 43 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.
- 44 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650.
- 45 R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454.
- 46 M. J. Frisch, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.

- 47 D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys., 2008, 10, 5207.
- 48 U. Varetto, Molekel 5.4.0.8, Swiss National Supercomputing Center, Manno, Switzerland, 2009.
- 49 Q. Chen, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai and S. D. Li, Phys. Chem. Chem. Phys., 2016, 18, 14186.
- 50 I. Boustani and A. Quandt, Eurphys. Lett., 1997, 9, 527.
- 51 A. Gindulyte, W. N. Lipscomb and N. L. Massa, Inorg. Chem., 1998, 37, 6544.
- 52 I. Boustani, A. Quandt, E. Hernandez and A. Rubio, J. Chem. Phys., 1999, 110, 3176.
- 53 M. H. Evans, J. D. Joannopoulos and S. T. Pantelides, Phys. Rev. B: Condens. Matter, 2005, 72, 045434.
- 54 J. Kunstmann and A. Quandt, Phys. Rev. B: Condens. Matter, 2006, 74, 035413.
- 55 K. C. Lau and R. Pandey, J. Phys. Chem. C, 2007, 111, 2906.
- 56 H. Tang and S. Ismail-Beigi, Phys. Rev. Lett., 2007, 99, 115501.
- 57 X. Yang, Y. Ding and J. Ni, Phys. Rev. B: Condens. Matter, 2008, 77, 041402(R).
- 58 E. S. Penev, S. Bhowmick, A. Sadrzadeh and B. I. Yakobson, Nano Lett., 2012, 12, 2441.
- 59 X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang and X. C. Zeng, ACS Nano, 2012, 6, 7443.
- 60 C. Ozdogan, S. Mukhopadhyay, W. Hayami, Z. B. Guvenc, R. Pandey and I. Boustani, J. Phys. Chem. C, 2010, 114, 4362.
- 61 A. B. Rahane and V. Kumar, Nanoscale, 2015, 7, 4055.