PCCP

View Article Online

COMMUNICATION

Cite this: Phys. Chem. Chem. Phys., 2016, 18, 9922

Received 25th February 2016, Accepted 18th March 2016

DOI: 10.1039/c6cp01279e

www.rsc.org/pccp

Saturn-like charge-transfer complexes $Li_4 \& B_{36}$, $Li_5 \& B_{36}^+$, and $Li_6 \& B_{36}^{2+}$: exohedral metalloboro-spherenes with a perfect cage-like B_{36}^{4-} core⁺

Wen-Juan Tian, Qiang Chen, Hai-Ru Li, Miao Yan, Yue-Wen Mu, Hai-Gang Lu,* Hua-Jin Zhai* and Si-Dian Li*

Based on extensive first-principles theory calculations, we present the possibility of construction of the Saturn-like charge-transfer complexes $\text{Li}_4 \& \text{B}_{36}$ (2), $\text{Li}_5 \& \text{B}_{36}^+$ (3), and $\text{Li}_6 \& \text{B}_{36}^{2+}$ (4) all of which contain a perfect cage-like B_{36}^{4-} (1) core composed of twelve interwoven boron double chains with a $\sigma + \pi$ double delocalization bonding pattern, extending the B_n^q borospherene family from n = 38-42 to n = 36 with the highest symmetry of $T_{\rm h}$.

As a typical electron-deficient element, boron has a rich chemistry dominated by multicenter-two-electron bonds (mc-2e bonds) in both polyhedral molecules and bulk allotropes. Multicenter bonds also appear to be responsible for the planar or quasi-planar structures of a wide range of boron clusters $B_n^{-/0}$ (*n* = 3–25, 27, 30, 35, and 36).¹⁻¹⁰ In particular, B₃₆ possesses a high-symmetry C_{6v} quasi-planar structure featuring dual π aromaticity, analogous to coronene $(C_{24}H_{12})$.^{8,9} The possibility of preparation of all-boron fullerenes was firstly proposed for B₈₀ in 2007,¹¹ constructed from C₆₀ by capping the twenty surface hexagons. However, later theoretical investigations indicate that B₈₀ strongly favors coreshell-type structures over the fullerene-like configuration.^{12,13} The first all-boron fullerenes $D_{2d} B_{40}^{-/0}$, referred to as borospherenes in the literature, were discovered in 2014 in a combined experimental and theoretical investigation.¹⁴ The axially chiral borospherenes $C_3/C_2 B_{39}^{-}$ were observed in 2015.¹⁵ Two cationic chiral members $C_1 B_{41}^{+}$ and $C_2 B_{42}^{-2+16}$ were recently presented to the borospherene family based on extensive first-principles theory calculations. The cubic-box-like B_{39}^{-} , B_{40} , B_{41}^{+} , and B_{42}^{2+} thus form a π -isovalent B_n^q series in different charge states (q = n - 40), which are all composed of twelve interwoven boron double-chains (BDCs) with six hexagonal or heptagonal faces, that is, $n_6 + n_7 = 6$ with (3, 3), (2, 4), (1, 5), and (0, 6) for n = 39, 40, 41, and 42, respectively. Multicenter bonding interactions go extreme in these borospherenes which possess the universal bonding pattern of σ plus π double

delocalization, with 12 multicenter two-electron π -bonds (12 mc-2e π) over a σ -skeleton made of n + 8 delocalized three-center-two-electron σ -bonds $(n + 8 \text{ 3c-2e } \sigma)$.^{14–16} The observation of $D_{2d} B_{40}^{-/0}$ and C_3/C_2 . B_{39}^{-} leads to a quick surge of borospherene chemistry. The first endohedral M@B₄₀ (M = Ca, Sr) and exohedral M@B₄₀ (M = Be, Mg) metalloborospherenes were reported in a recent communication at the density functional theory (DFT) level.¹⁷ A theoretical study of the electronic structure and electronic spectra of D_{2d} B₄₀,¹⁸ a topological analysis of D_{2d} B₄₀,¹⁹ a computational investigation on endohedral M@B₄₀ (M = Sc, Y, La),²⁰ a molecular dynamics study of D_{2d} B₄₀ at high temperatures,²¹ and a theoretical prediction of the hydrogen-storage capacity of ${B_{40}}^{22}$ quickly followed. Both ${B_{38}}^{2-}$ and B_{39}^{-} borospherenes have also been stabilized in Ca@B₃₈²³ and $Ca(B_{39})^{+24}$ by encapsulating a Ca atom at the cage center as an electron donor. $C_2/C_s B_{42}^+$ borospherenes with octagonal holes were also reported.²⁵ The latest development in boron clusters is the characterization of the seashell-like $C_2 \operatorname{B_{28}}^{-/0}$ which, as the smallest borospherenes observed so far in a structural pattern different from D_{2d} B₄₀, possesses one surface hexagon and two surface heptagons with $(n_6, n_7) = (1, 2)$.²⁶ However, there have been no borospherenes reported to date with purely surface hexagons. Whether a cubic-box-like B_n^q borospherene with six surface hexagons and no heptagon $(n_6, n_7) = (6, 0)$ exists or not or whether such an electron-deficient cage can be effectively stabilized with metal dopants as electron donors remains an open question in both experiment and theory.

Based on extensive first-principles theory calculations, we present herein the possibility of the construction of Saturn-like $\text{Li}_4 \otimes \text{B}_{36}$ (2), $\text{Li}_5 \otimes \text{B}_{36}^+$ (3), and $\text{Li}_6 \otimes \text{B}_{36}^{2+}$ (4) which, as typical exohedral charge-transfer complexes, all contain a perfect cage-like B_{36}^{4-} (1) core composed of twelve interwoven BDCs with six surface hexagons, expanding the B_n^{q} family to B_{36}^{4-} with $(n_6, n_7) = (6, 0)$. As the lowest-lying isomers of the systems obtained, the high-symmetry $D_{2\text{h}}$ Li₄ $\otimes \text{B}_{36}$ (2), $C_{2\text{v}}$ Li₅ $\otimes \text{B}_{36}^+$ (3), and T_{h} Li₆ $\otimes \text{B}_{36}^{2+}$ (4) possess 44 delocalized 3c-2e σ bonds and 12 delocalized 5c-2e π bonds evenly distributed on the cage surface, matching the $\sigma + \pi$ double delocalization bonding pattern of the borospherene family perfectly. The vibrational frequencies and electron detachment energies of the

Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China. E-mail: luhg@sxu.edu.cn, hj.zhai@sxu.edu.cn, lisidian@sxu.edu.cn

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp01279e

concerned species have been computationally predicted to facilitate their experimental characterization.

Manual structural constructions and initial hybrid DFT-PBE027 calculations based on typical planar, cage-like, and tubular isomers of $B_{36}^{-/08,9}$ were performed for Li_4B_{36} , $Li_5B_{36}^{+}$, and $Li_6B_{36}^{2+}$. Extensive minima hopping (MH)^{13,28} structural searches produced no isomers with lower energies than 2-4. Low-lying isomers were then fully optimized (with frequencies checked) with their relative energies evaluated at the DFT-PBE0 level with the 6-311+G(d) basis set²⁹ using the Gaussian 09 suite.³⁰ The relative stabilities of the important lowest-lying isomers of 2-4 were further refined using the more accurate coupled cluster method with triple excitations (CCSD(T))³¹⁻³³ implemented in MOLPRO³⁴ with the 6-311G(d) basis set at the PBE0 geometries. Molecular dynamics (MD) simulations were performed for 2-4 at 200, 400, 600 K, and 800 K for 30 ps using the software suite CP2K.³⁵ The optimized $T_{\rm h}$ B₃₆^{4–} (1), $D_{\rm 2h}$ $Li_4 \& B_{36}$ (2), $C_{2v} Li_5 \& B_{36}^+$ (3), and $T_h Li_6 \& B_{36}^{2+}$ (4) are depicted in Fig. 1. More alternative isomers are summarized Fig. S1-S4 in the ESI.†

It is known that the experimentally observed B₃₆ possesses a beautiful C6v quasi-planar geometry with a hexagonal hole at the center, with the cubic-box-like C2h B36 cage lying much higher in energy (by 2.84 eV at PBE0).⁹ Detailed orbital analyses indicate that, compared with $D_{2d} B_{40}$, the cage-like $C_{2h} B_{36}$ lacks four π valence electrons to match the σ + π double delocalization bonding pattern of borospherenes.^{14–16} It turns out to be true that the tetraanion B_{36}^{4-} (1) with four extra electrons does possess a perfect T_h cage-like local minimum which matches both the geometrical and electronic structural patterns of borospherenes (as detailed below). $B_{36}^{4-}(1)$ can also be viewed as a cubic-box-like cage with eight apex-sharing B₆ triangles at the eight corners. However, $T_{\rm h} B_{36}^{4-}$ (1) lies much higher in energy (by 4.19 eV at PBE0) than its double-ring tubular counterpart D_{6d} B_{36}^{4-} (Fig. S1, ESI⁺) due to the strong Coulomb repulsion in the cage. To stabilize $T_{\rm h} B_{36}^{4-}$ (1), we introduce four Li⁺ counterions into the system to neutralize the extra negative charges the cage carries. Encouragingly, as shown in Fig. S2 (ESI⁺), the neutral exohedral D_{2h} Li₄&B₃₆ (2) with four face-capping Li⁺ atoms appears to be almost isoenergetic with the triple-ring tubular C_{2h} Li₄@B₃₆ at the PBE0 level, with a minor relative energy of 0.17 eV. More convincingly, at the more accurate CCSD(T) level which has been tested to be reliable for boron clusters in this size range,^{14–16} the cage-like D_{2h} Li₄&B₃₆ (2) turns out to be 0.10 eV more stable than its triple-ring tubular rival C_{2h} Li₄&B₃₆ (Fig. S2, ESI^{\dagger}). D_{2h} Li₄&B₃₆ (2) is therefore the most stable isomer of Li₄ B_{36} obtained. Four face-capping Li atoms in Li₄ $\&B_{36}$ (2) are

1 $T_h B_{36}^{4-}(^{1}A_g)$ **2** $D_{2h} Li_4 \& B_{36}(^{1}A_g)$ **3** $C_{2\nu} Li_5 \& B_{36}^{++}(^{1}A_1)$ **4** $T_h Li_6 \& B_{36}^{2+}(^{1}A_g)$ **Fig. 1** Optimized structures of $T_h B_{36}^{4-}$ **(1)**, $D_{2h} Li_4 & B_{36}$ **(2)**, $C_{2\nu} Li_5 & B_{36}^{++}$ **(3)**, and $T_h Li_6 & B_{36}^{2+}$ **(4)** at the PBE0/6-311+G(d) level.

strongly bonded to the B36 core over four equivalent surface hexagons, with the binding energy of 3.27 eV per Li at PBE0. Li₄&B₃₆ (2) thus forms a beautiful Saturn-like exohedral complex, with the perfect B_{36}^{4-} borospherene core surrounded by four equivalent face-capping Li⁺ monocations on the equator. With 44 triangles on twelve interwoven BDCs and six hexagons on the cage surface, the B_{36}^{4-} borospherene core in Li₄&B₃₆ (2) follows the Euler's rule as follows: E (84 edges) = F (44 triangular + 6 hexagonal faces) + V (36 vertices) - 2. As typical positional isomers of $Li_4 \& B_{36}$ (2), the third lowest-lying $C_8 Li_4 \& B_{36}$ with four face-capping Li⁺ and the fifth lowest-lying C_{2v} Li₃&[Li@B₃₆] with one encapsulated Li⁺ and three face-capping Li⁺ lie 0.04 eV and 0.21 eV higher than 2 at CCSD(T), respectively. As shown in Fig. S2 (ESI^{\dagger}), the low-lying isomers obtained for Li₄B₃₆ within 1.6 eV all turn out to be cage-like or tubular, with the quasiplanar isomers derived from the quasiplanar C_{6v} B₃₆ lying much higher in energy than 2 by at least 1.63 eV.

Introducing one or two more Li⁺ cations into the system is expected to further stabilize the Saturn-like metalloborospherene. It turns out to be true. As shown in Fig. S3 and S4 (ESI⁺), both the high-symmetry C_{2v} Li₅&B₃₆⁺ (3) and T_h Li₆&B₃₆²⁺ (4) with a perfect B_{36}^{4-} borospherene core are the well-defined lowest-lying isomers of the systems obtained which lie much lower in energy than other low-lying isomers. The exohedral $\text{Li}_5 \otimes \text{B}_{36}^+$ (3) with four equivalent Li⁺ on the equator and one Li⁺ on the top possesses the overall symmetry of C_{2v} , while the exohedral Li₆&B₃₆²⁺ (4) with six equivalent Li⁺ cations over the cage surface (with four on the equator and two on the top and bottom) has a perfect cage-like geometry with the highest symmetry of $T_{\rm h}$. C_{2v} Li₄&[Li@B₃₆]⁺, the second lowest-lying isomer of Li5B36+ with one encapsulated Li+ at the center and four face-capping Li⁺ on the equator lies 0.39 eV higher than $\text{Li}_5 \otimes \text{B}_{36}^+$ (3) at CCSD(T) (Fig. S3, ESI⁺), while C_{2v} $Li_5 \& [Li_3 B_{36}]^{2+}$, the second lowest-lying isomer of $Li_6 B_{36}^{2+}$ with one encapsulated Li⁺ at the center, four face-capping Li⁺ on the equator, and one Li⁺ on the top, lies 0.72 eV higher in energy than $\mathrm{Li}_{6}\!\!\otimes\!\!\mathrm{B_{36}}^{2^{+}}$ (4) at the same theoretical level (Fig. S4, ESI†). Other tubular and planar isomers turn out to be much less stable than 3 and 4 in thermodynamics.

The high stabilities of Li₄&B₃₆ (2), Li₅&B₃₆⁺ (3), and Li₆&B₃₆²⁺ (4) originate from their unique electronic structures and bonding patterns. Molecular orbital analyses indicate that the closed-shell 2, 3, and 4 possess the huge HOMO–LUMO energy gaps of 2.98, 3.12, and 3.21 eV at PBE0 (Fig. S5, ESI[†]), respectively. These values are comparable with the corresponding values of 2.89, 3.13, 3.16, 3.24, and 3.02 eV calculated for C_3 B₃₉⁻, D_{2d} B₄₀, C_1 B₄₁⁺, C_2 B₄₂²⁺, and I_h C₆₀ at the same theoretical level, respectively, ^{14–17} well supporting the chemical stabilities of these exohedral metalloborospherenes. Natural charge analyses³⁶ reveal that 2, 3, 4 are typical charge-transfer complexes in nature, with each face-capping Li atom donating one electron to the electron-deficient B₃₆ core, as indicated by the calculated natural charges of $q_{Li} = +0.83$, +0.86, and +0.89 |e| and $q_{B_{36}} = -3.32$, -3.30, and -3.34 |e| for 2, 3, and 4, respectively.

Detailed adaptive natural density partitioning (AdNDP) analyses³⁷ unveil the universal $\sigma + \pi$ double delocalization bonding pattern of **1–4.** As shown in Fig. 2, the bare $T_{\rm h} B_{36}^{4-}$ (**1**) has 36 3c-2e σ bonds

Fig. 2 AdNDP bonding patterns of (a) $T_h B_{36}^{4-}$ (**1**), (b) $D_{2h} Li_4 \& B_{36}$ (**2**), (c) $C_{2v} Li_5 \& B_{36}^{++}$ (**3**), and (d) $T_h Li_6 \& B_{36}^{2++}$ (**4**), with the occupation numbers (ONs) indicated.

evenly distributed on the 36 B₃ triangles on the cage surface and 8 6c-2e σ bonds on the 8 B₆ planar triangles at the eight corners. As the central B₃ triangles make the main contributions to the 6c-2e σ bonds, these σ interactions can be approximately treated as 44 3c-2e σ bonds, with one 3c-2e σ bond on each B_3 triangle on the cage surface. The remaining 24 valence electrons are evenly distributed in 12 5c-2e π bonds over the 12 interwoven BCDs. Such a $\sigma + \pi$ double delocalization matches the universal bonding pattern of the borospherene family perfectly.14-17 As also shown in Fig. 2, the Li-stabilized D_{2h} Li₄&B₃₆ (2), C_{2v} ${\rm Li}_5 \& {\rm B}_{36}^{+}$ (3), and ${\it T}_h ~{\rm Li}_6 \& {\rm B}_{36}^{2+}$ (4) all have 36 3c-2e σ bonds, 8 6c-2e σ bonds, and 12 5c-2e π bonds. They possess therefore the same bonding pattern as $B_{36}^{4-}(1)$ which, stabilized in 2–4 by 4-6 face-capping Li⁺ monocations, forms the smallest borospherene with the highest symmetry of $T_{\rm h}$ in the B_n^q (q = n - 40)series.¹⁴⁻¹⁶ Such a double delocalization bonding pattern renders three-dimensional (3D) aromaticity to these isovalent systems, as evidenced by the calculated huge negative nucleus-independent chemical shifts (NICS)³⁸ of -35.9, -42.8, -44.0, and -45.2 ppm at the cage centers of 1, 2, 3, and 4, respectively. These numbers are well comparable with the corresponding values of -37 ppm, -38 ppm, -39 ppm, -43 ppm, -41 ppm, and -40 ppm calculated for $C_{\rm s} \ {\rm B_{38}}^{2-}$, $C_{3} \ {\rm B_{39}}^{-}$, $C_{2} \ {\rm B_{39}}^{-}$, $D_{2d} \ {\rm B_{40}}$, $C_{1} \ {\rm B_{41}}^{+}$, and $C_2 B_{42}^{2+,14-16,23}$ respectively.

Extensive molecular dynamics simulations indicate that D_{2h} Li₄&B₃₆ (2), C_{2v} Li₅&B₃₆⁺ (3), and T_h Li₆&B₃₆²⁺ (4) are dynamically highly stable at 200 K with the root-mean-square-deviations (RMSD) of RMSD = 0.06 Å, 0.07 Å, and 0.07 Å and the maximum bond length deviations of MAXD = 0.20 Å, 0.23 Å, and 0.27 Å, respectively (see Fig. S6–S8, ESI†). No obvious structural fluctuations in 2, 3, and 4 are seen even at 600 K. However, at 800 K, D_{2h} Li₄&B₃₆²⁺ (2) starts to fluctuate in concerted mechanisms involving

hexagon–heptagon structural transformations (Fig. S6, ESI[†]), while C_{2v} Li₅&B₃₆⁺ (3) and T_h Li₆&B₃₆²⁺ (4) remain dynamically stable, further indicating that the face-capping Li⁺ monocations help promote the structural robustness of these exohedral complexes.

Infrared photodissociation spectroscopy in combination with first-principles theory calculations has proven to be an effective approach in the characterization of novel clusters.^{39,40} As indicated in the simulated IR spectra of 1-4 in Fig. S9 (ESI[†]), the two major IR peaks of $T_h B_{36}^{4-}(1)$ at 1179 cm⁻¹ (t_u) and 815 cm⁻¹ (t_u) are well inherited in 2, 3, and 4. The strong IR absorptions at 386 cm⁻¹ (b_{3u}) in Li₄&B₃₆ (2), 357 cm⁻¹ (b_2) in $Li_5 \& B_{36}^+$ (3), and 324 cm⁻¹ (t_u) in $T_h Li_6 \& B_{36}^{2+}$ (4) involve the concerted vibrations of the B₃₆ core and the capping Li atoms around it. The Raman spectra of 2-4 also exhibit certain similarities to 1, with the main peaks at 1127 cm⁻¹ (e_{σ}) and 811 cm⁻¹ (t_g) in $T_h B_{36}^{4-}$ (1) basically remained in 2-4 at lower relative intensities (Fig. S9, ESI†). The major Raman peaks below 650 cm^{-1} in 2-4 involve the vibrations of the face-capping Li atoms in these species. The Raman active modes of $T_h B_{36}^{4-}(1)$ at 205 $cm^{-1}~(e_g)$ and 459 $cm^{-1}~(a_g)$ belong to typical "radial breathing modes" (RBMs) of the B_{36}^{-4-} cage. Similar RBMs exist in 2-4 with small blue shifts. A strong RBM peak was observed at 210 cm^{-1} for single-walled boron nanotubes with a diameter of $36 \pm 1 \text{ Å.}^{41}$

Joint photoelectron spectroscopy (PES) experimental and *ab initio* theoretical investigations have served as the most powerful approach to characterize gas-phase boron clusters in the past decade.^{1–10,14,15} Using the time-dependent DFT approach,⁴² we simulate the PES spectrum of D_{2h} Li₄&B₃₆⁻, as shown in Fig. 3, which exhibits obvious similarities to the simulated PES of the observed D_{2d} B₄₀^{-,14} with a large energy gap of 1.64 eV between the first weak peak (¹A_g) and the second strong band (³B_{3g}). Li₄&B₃₆⁻ possesses extremely low ground-state adiabatic and vertical detachment energies ADE = 1.48 eV and VDE = 1.54 eV at PBE0, with a redshift of about 0.9 eV with respect to D_{2d} B₄₀^{-,14} Other weak PES peaks with higher excitation energies may serve as fingerprints to characterize Li₄&B₃₆^{-/0} in future experiments.

Finally, we present the possibility of the Saturn-like D_{2h} Li₂&[Ca@B₃₆] (5), C_{2v} Li₃&[Ca@B₃₆]⁺ (6), and D_{2h} Li₄&[Ca@B₃₆]²⁺ (7) which possess one encapsulated Ca²⁺ at the cage center and

Fig. 3 Simulated PES spectrum of $D_{2h} \operatorname{Li}_4 \vartheta B_{36}^-$.

 $2-4 \text{ Li}^+$ monocations on the equator (Fig. 4). Calcium has proven to be an effective divalent electron donor to stabilize both B_{38}^{2-} and B_{39}^- borospherenes in Ca@B₃₈ and Ca@B₃₉^{+,23,24} The bimetal 5–7 follow the same $\sigma + \pi$ double delocalization bonding pattern as 2–4. They may serve as model complexes with both encapsulated and face-capping metal centers. Initial investigations indicate that B_{36}^{4-} (1) may also serve as building blocks to form Li₄&B₃₆ and Ca&[Ca@B₃₆] 3D crystals with both endohedral and exohedral metal dopants. Similarly, a B_{37}^{3-} borospherene cage may be stabilized in both Ca@B₃₇⁻ and Li&[Ca@B₃₇].

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21373130, 21573138, and 21473106).

Notes and references

- H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev and L. S. Wang, *Angew. Chem., Int. Ed.*, 2003, 42, 6004.
- 2 H. J. Zhai, B. Kiran, J. Li and L. S. Wang, *Nat. Mater.*, 2003, 2, 827.
- 3 B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng and L. S. Wang, *Proc. Natl. Acad. Sci. U. S. A.*, 2005, **102**, 961.
- 4 W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang and A. I. Boldyrev, *Nat. Chem.*, 2010, **2**, 202.
- 5 E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes and R. Hlrichs, *Angew. Chem., Int. Ed.*, 2007, 46, 8503.
- 6 W. L. Li, Y. F. Zhao, H. S. Hu, J. Li and L. S. Wang, Angew. Chem., Int. Ed., 2014, 53, 5540.
- 7 W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li and L. S. Wang, *J. Am. Chem. Soc.*, 2014, **136**, 12257.
- 8 Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li and L. S. Wang, *Nat. Commun.*, 2014, 5, 3113.
- 9 Q. Chen, G. F. Wei, W. J. Tian, H. Bai, Z. P. Liu, H. J. Zhai and S. D. Li, *Phys. Chem. Chem. Phys.*, 2014, **16**, 18282.
- 10 (a) A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai and L. S. Wang, *Coord. Chem. Rev.*, 2006, 250, 2811; (b) C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev and L. S. Wang, *Acc. Chem. Res.*, 2013, 46, 350; (c) A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang and A. I. Boldyrev, *Acc. Chem. Res.*, 2014, 47, 1349.
- 11 N. G. Szwacki, A. Sadrzadeh and B. I. Yakobson, *Phys. Rev. Lett.*, 2007, **98**, 166804.

- 12 F. Y. Li, P. Jin, D. E. Jiang, L. Wang, S. B. Zhang, J. J. Zhao and Z. F. Chen, *J. Chem. Phys.*, 2012, **136**, 074302.
- S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese and S. Goedecker, *Phys. Rev. Lett.*, 2011, **106**, 225502.
- 14 H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li and L. S. Wang, *Nat. Chem.*, 2014, 6, 727.
- 15 Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li and L. S. Wang, ACS Nano, 2015, 9, 754.
- 16 Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai and S. D. Li, *Angew. Chem., Int. Ed.*, 2015, **54**, 8160.
- 17 H. Bai, Q. Chen, H. J. Zhai and S. D. Li, Angew. Chem., Int. Ed., 2015, 54, 941.
- 18 R. X. He and X. C. Zeng, Chem. Commun., 2015, 51, 3185.
- 19 P. Schwerdtfeger, L. N. Wirz and J. Avery, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.*, 2015, **5**, 96.
- 20 P. Jin, Q. H. Hou, C. C. Tang and Z. F. Chen, *Theor. Chem. Acc.*, 2015, **134**, 13.
- 21 G. Martínez-Guajardo, J. L. Cabellos, A. Díaz-Celaya, S. Pan, R. Islas, P. K. Chattaraj, T. Heine and G. Merino, *Sci. Rep.*, 2015, 5, 11287.
- 22 H. Dong, T. Hou, S.-T. Lee and Y. Li, *Sci. Rep.*, 2015, 5, 9952.
- 23 Q. Chen, H. R. Li, C. Q. Miao, Y. J. Wang, H. G. Lu, Y. W. Mu, G. M. Ren, H. J. Zhai and S. D. Li, *Phys. Chem. Chem. Phys.*, 2016, DOI: 10.1039/C5CP06169E.
- 24 Q. Chen, T. Gao, W. J. Tian, H. Bai, S. Y. Zhang, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai and S. D. Li, *Phys. Chem. Chem. Phys.*, 2015, **17**, 19690.
- 25 T. B. Tai, S. U. Lee and M. T. Nguyen, *Phys. Chem. Chem. Phys.*, 2016, DOI: 10.1039/c5cp07342a.
- 26 Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li and L. S. Wang, *J. Chem. Phys.*, 2016, 144, 064307.
- 27 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.
- 28 S. Goedecker, W. Hellmann and T. Lenosky, *Phys. Rev. Lett.*, 2005, **95**, 055501.
- 29 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650.
- 30 M. J. Frisch, *et al.*, *Gaussian 09, Revision D.01*, Gaussian Inc., Wallingford, CT, 2009.
- 31 J. Čížek, Adv. Chem. Phys., 1969, 14, 35.
- 32 G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
- 33 K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, *Chem. Phys. Lett.*, 1989, **157**, 479.
- 34 H. J. Werner, et al., MOLPRO, version 2012.1.
- J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.*, 2005, 167, 103.
- 36 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales and F. Weinhold, *NBO 5.0*, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001.

- 37 D. Yu. Zubarev and A. I. Boldyrev, *Phys. Chem. Chem. Phys.*, 2008, **10**, 5207.
- 38 P. v. R. Schleyer and C. Maerker, J. Am. Chem. Soc., 1996, 118, 6317.
- 39 G. J. Wang, J. M. Cui, C. X. Chi, X. J. Zhou, Z. H. Li, X. P. Xing and M. F. Zhou, *Chem. Sci.*, 2012, **3**, 3272.
- 40 G. J. Wang, M. F. Zhou, J. T. Goettel, G. J. Schrobilgen, J. Su, J. Li, T. Schlöder and S. Riedel, *Nature*, 2014, **514**, 475.
- 41 D. Ciuparu, R. F. Klie, Y. M. Zhu and L. Pfefferle, *J. Phys. Chem. B*, 2004, **108**, 3967.
- 42 R. Bauernschmitt and R. Ahlrichs, *Chem. Phys. Lett.*, 1996, 256, 454.