Cite this: Dalton Trans., 2016, 45, 3874

Received 4th January 2016,
Accepted 19th January 2016
DOI: 10.1039/c6dt00028b
www.rsc.org/dalton

A niobium-necked cluster $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ with aromatic $\mathrm{Sn}_{3}{ }^{2-} \dagger$

Fu-Xing Pan, $\ddagger^{\text {a,b }}$ Cong-Qiao Xu, \ddagger^{c} Lei-Jiao Li, ${ }^{\text {a }}$ Xue Min, ${ }^{\text {a,b }}$ Jian-Qiang Wang, ${ }^{d}$ Jun Li,*c,e Hua-Jin Zhaif and Zhong-Ming Sun*a

Abstract

We describe here the synthesis and characterization of a ternary cluster compound $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ (1), in which a niobium(v) atom is coordinated by an $\mathrm{As}_{3}{ }^{3-}$ triangle and a bowl-type $\mathrm{As}_{3} \mathrm{Sn}_{3}{ }^{5-}$ ligand. Cluster 1 was synthesized by dissolving $\mathrm{K}_{8} \mathrm{NbSnAs}_{5}$ (2) in the presence of [2.2.2]crypt in ethylenediamine solution, filtered and layered with toluene, then crystallized in the form of $[K([2.2 .2] c r y p t)]_{3}\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right] \cdot \mathrm{en} \cdot \mathrm{tol}$. The flower-vase shaped compound 1 features a new structure type, rather different from the known Zintl phases. The stability and bonding of 1 are elucidated via extensive bonding analyses. The Sn_{3} ring is found to have σ-aromaticity featuring a delocalized $\mathrm{S} n-\mathrm{Sn}-\mathrm{Sn} \sigma$ bond. Electronic structure calculations confirm the $\mathrm{Nb}(\mathrm{v})$ oxidation state and weak $\mathrm{Nb}-\mathrm{Sn}$ and $\mathrm{Sn}-\mathrm{Sn}$ bonding, in addition to the normal $\mathrm{Nb}-\mathrm{As}$ and As-As bonds.

1. Introduction

The bridge between solution and solid chemistry of Zintl clusters has been established for more than 80 years. ${ }^{1}$ A variety of homo and binary p-block polyanions such as $\mathrm{E}_{9}{ }^{4-}(\mathrm{E}=\mathrm{Ge}, \mathrm{Sn})$ and $\mathrm{Sn}_{2} \mathrm{Bi}_{2}{ }^{2-}$ have been extracted from salt-like precursors. ${ }^{2}$ The report of closo- $\mathrm{Sn}_{9} \mathrm{Cr}(\mathrm{CO})_{3}{ }^{4-}$ by Eichhorn and co-workers triggered a new direction by introducing d-block metals into the polyanions, ${ }^{3}$ leading to the formation of clusters with unique geometries and electronic structures. ${ }^{4}$ Notably these include the onion-skin like $\left[\mathrm{As@Ni}_{12} @ \mathrm{As}_{20}\right]^{3-}$, $\left[\mathrm{M} @ \mathrm{~Pb}_{12}\right]^{2-}(\mathrm{M}$ $=\mathrm{Ni}, \mathrm{Pt}, \mathrm{Pd})$, and endohedral "stannaspherene" $\left[\mathrm{Ir} @ \mathrm{Sn}_{12}\right]^{3-} .{ }^{5-9}$

[^0]Group 15 polyanions $\mathrm{Pn}_{7}{ }^{3-}(\mathrm{Pn}=\mathrm{P}, \mathrm{As})$ have also been successfully activated by a $\operatorname{Co}(\mathrm{II})$ complex "where the nuclearity of the heptaphosphide starting material remains the same but where a significant alteration of the nortricyclane-like cage geometry has resulted" ${ }^{10}$ As for their heavier congeners, some anions with lower nuclearities such as $\mathrm{Sb}_{n}{ }^{n-}(n=3,5)$ and $\mathrm{Bi}_{n}{ }^{n-}(n=$ 2,3) can be isolated or stabilized by transition metals (TMs), proving the existence of $\mathrm{Pn}_{n}{ }^{n-}(\mathrm{Pn}=\mathrm{Sb}, \mathrm{Bi})$ in solutions. ${ }^{11 a-c}$ Notably, $\mathrm{Bi}_{n}{ }^{3-}(n=7,11)$ were obtained recently in the presence of Cr and Ga , respectively. ${ }^{11 d, e}$ On the other hand, TMs may also serve as oxidation agents, for example, $\mathrm{Pb}_{10}{ }^{2-}$ was obtained through $\mathrm{Pb}_{9}{ }^{4-}$ as oxidized by a $\mathrm{Au}(\mathrm{I})$ precursor. ${ }^{12}$ Apart from d-block embedding Zintl clusters, f-block elements have also been introduced into the $\mathrm{Sn}-\mathrm{Bi}, \mathrm{Pb}-\mathrm{Bi}, \mathrm{In}-\mathrm{Bi}$ and Ga-Bi systems. ${ }^{13}$

The above clusters, also named as "intermetalloid clusters", a concept introduced by Fässler, ${ }^{14}$ greatly enrich the family of Zintl phases and provide understanding of metal-metal bonding interactions. However, compared with the diverse electron-rich TM and rare-earth metal embedded anions, isolated clusters with electron-deficient TM atoms are mainly metal carbonyl complexes, except for $\left[\mathrm{MPn}_{8}\right]^{n-}(\mathrm{M}=\mathrm{Cr}$, Mo, $\mathrm{Nb} ; \mathrm{Pn}=\mathrm{As}, \mathrm{Sb} ; n=2,3)$ and $\left[\left(\eta-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right) \mathrm{NbSn}_{6} \mathrm{Nb}(\eta-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)\right]^{2-.}{ }^{4 b, 15}$ Recently, a series of $\mathrm{Ti}-\mathrm{Sn}$ clusters with a cyclopentadienyl ligand were synthesized in liquid ammonia. ${ }^{16}$ "Extremely hard cations" of $\mathrm{M}^{5+}(\mathrm{M}=\mathrm{V}, \mathrm{Nb})$ were encapsulated in the Ge-As cages to form $\left[\mathrm{V} @ \mathrm{Ge}_{8} \mathrm{As}_{4}\right]^{3-}$ and $\left[\mathrm{Nb} @ \mathrm{Ge}_{8} \mathrm{As}_{6}\right]^{3-}$, respectively. ${ }^{17}$ Besides Zintl clusters, electrondeficient TMs were also used in the activation of $\mathrm{P}_{4} \cdot{ }^{18}$ In general, ligand-free Zintl clusters embedding electron-deficient TM atoms are still poorly explored. In this paper, we report a

Fig. 1 Thermal ellipsoid plot of $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ (drawn at 50% probability). Selected bond distances (in Å): Nb1-As1-3, 2.558(1)-2.584(1); Nb1-As4-6, 2.770(1)-2.791(1); Sn-Sn, 3.123(1)-3.145(1); Sn-As, 2.735(1)2.775(1); As-As, 2.416(1)-2.437(1). Bond angles within the As_{3} and Sn_{3} triangles (in degrees): 59.66(3)-60.51(3); 59.65(2)-60.33(2).
niobium-necked ternary Zintl cluster $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ with an entirely new structure type (Fig. 1), which was characterized in $[\mathrm{K}([2.2 .2] \text { crypt })]_{3}\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right] \cdot \mathrm{en} \cdot \mathrm{tol}$.

2. Results and discussion

As shown in Fig. 1, the $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ cluster consists of an As_{3} triangle, a Nb atom, and a bowl-type $\mathrm{As}_{3} \mathrm{Sn}_{3}$ unit. The Nb atom is situated in the central position, bridging the top As_{3} triangle and the bottom $\mathrm{As}_{3} \mathrm{Sn}_{3}$ unit. The top As_{3} ligand is reminiscent of those in $\left[\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]^{-}, \quad\left[\mathrm{Co}\left(\eta^{3}-\mathrm{As}_{3}\right)\left\{\eta^{4}-\right.\right.$ $\left.\left.\mathrm{As}_{4}(\mathrm{mes})_{2}\right\}\right]^{2-}, \quad\left[\mathrm{Co}_{6} \mathrm{As}_{12}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{6}\right], \quad\left[\mathrm{Pd}_{3} @ \mathrm{Pd}_{2} \mathrm{~Pb}_{10} \mathrm{Bi}_{6}\right]^{4-}$, and $\left[\mathrm{Sb}_{3} \mathrm{Au}_{3} \mathrm{Sb}_{3}\right]^{3-},{ }^{10 b, 19}$ and it is almost parallel to the bottom Sn_{3}, with a small dihedral angle of 2.4°. All bond angles within the two triangles are $60 \pm 0.51^{\circ}$. The torsion angles between AsSn_{2} and Sn_{3} faces are around 130°. The $\mathrm{Sn}-\mathrm{Sn}$ distances within the Sn_{3} triangle are in the range of $3.123-3.145 \AA$, which are relatively long for a normal $\mathrm{Sn}-\mathrm{Sn}$ single bond ($2.80 \AA$ in $\alpha-\mathrm{Sn}$), but comparable to those in $\left[\mathrm{Pd}_{2} @ \mathrm{Sn}_{18}\right]^{4-}(3.012-3.145 \AA) .{ }^{20}$ The $\mathrm{Nb}-\mathrm{Sn}$ distance is around $3.29 \AA$, which is slightly beyond the normal distance of effective bonding interaction. The $\mathrm{Sn}-\mathrm{As}$ bonds in $\mathrm{As}_{3} \mathrm{Sn}_{3}$ range from 2.735 to $2.775 \AA$, which are comparable to those in $\left[\mathrm{SnAs}_{15}\right]^{3-}(2.647$ to $2.749 \AA) .{ }^{21}$ There are two types of $\mathrm{Nb}-\mathrm{As}$ bonds within the cluster. $\mathrm{Nb}(1)-\mathrm{As}(1-3)$ bear an average bond distance of $2.571 \AA$, which is obviously shorter than that in $\mathrm{Nb}(1)-\mathrm{As}(4-6)(2.783 \AA$ in average). As a comparison, the $\mathrm{Nb}-\mathrm{As}$ bonds in $\left[\mathrm{NbAs}_{8}\right]^{3-}$ fall in the range of $2.614-2.637 \AA \AA^{15 d}$ Based on the above analysis, the sixcoordinated $\mathrm{Nb}(1)$ has strong interactions with $\mathrm{As}(1-3)$, but relatively weak interactions with $\mathrm{As}(4-6)$. The average As-As bond distance in the As_{3} triangle is $2.425 \AA$, comparable to those in $\left[\mathrm{NbAs}_{8}\right]^{3-}$ and $\left[\mathrm{TlAs}_{7}\right]^{2-} .{ }^{15 d, 21}$

In order to understand the structure and stability of this cluster, quantum chemical calculations were performed on $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ and its crystal using density-functional theory (DFT) calculations at the PBE level. As shown in

Table $\mathrm{S} 3, \dagger$ the optimized geometric parameters of $\left[\mathrm{As}_{3} \mathrm{Nb}\right.$ $\left.\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ with $C_{3 \mathrm{v}}$ symmetry lie in the range of the experimental ones. The calculated HOMO-LUMO energy gap is 1.61 eV , indicating remarkable electronic stability of the cluster. The electronic structure of $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ can be interpreted via a fragment molecular orbital (MO) approach. As shown in Fig. S8 and S9, \dagger the bonding interactions based on As 4 s and Sn 5 s atomic orbitals (AOs) play negligible roles in the $\mathrm{As}_{3}{ }^{3-}$ and $\mathrm{Sn}_{3}{ }^{2-}$ fragments, because the bonding and antibonding interactions cancel each other out. Thus, As, Sn, and Nb have three, two, and five valence electrons, respectively, resulting in a system of 32 valence electrons for $\left[\mathrm{As}_{3} \mathrm{Nb}\right.$ $\left.\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$, which occupy 16 MOs as shown in Fig. S12. \dagger Note that the $\mathrm{As}_{3}{ }^{+}$and $\mathrm{Sn}_{3}{ }^{2-}$ ions have large HOMO-LUMO gaps (Fig. S 8 and $\mathrm{S} 9 \dagger$) and should be electronically rather stable, in which all the bonding MOs from the radial, tangential, and vertical p-AOs of the three atoms are fully occupied, whereas their corresponding antibonding MOs are empty.

Fig. 2 shows the scalar relativistic (SR) energy levels of $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ and its $\mathrm{Nb}, \mathrm{As}_{3}$, and $\mathrm{As}_{3} \mathrm{Sn}_{3}$ fragments due to orbital interactions. As shown in Fig. S11, \dagger the spin-orbit coupling effects cause little splitting of the SR levels, which will not be discussed. The Nb 5 s and 4 d AOs transform as $\mathrm{a}_{1}(\mathrm{~s})$ and $\mathrm{a}_{1}\left(\mathrm{~d}_{z^{2}}\right)+\mathrm{e}\left(\mathrm{d}_{x z}, \mathrm{~d}_{y z}\right)+\mathrm{e}\left(\mathrm{d}_{x y}, \mathrm{~d}_{x^{2}-y^{2}}\right)$ in $C_{3 \mathrm{v}}$ symmetry. Based on the MO theory, Nb 5 s and 4 d AOs will be considerably destabilized through orbital interactions with the As_{3} and $\mathrm{As}_{3} \mathrm{Sn}_{3}$ fragments. As a result, all the five electrons of Nb are lost, leading to an anticipated d^{0}-complex with a $\mathrm{Nb}(\mathrm{v})$ oxidation state. For the top As_{3} fragment, the $2 \mathrm{a}^{\prime \prime}{ }_{2}$ and $3 \mathrm{e}^{\prime \prime}$ orbitals consisting of As vertical p π-AOs (Fig. $\mathrm{S} 8 \dagger$) will overlap directly with the $\mathrm{Nb}_{z^{2}}$ and $\left(\mathrm{d}_{x z}, \mathrm{~d}_{y z}\right)$ AOs, as shown in the con-

Fig. 2 Energy levels of the scalar-relativistic Kohn-Sham MOs of $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ and their correlation with the orbitals of the $\mathrm{Nb}, \mathrm{As}_{3}$, and $\mathrm{As}_{3} \mathrm{Sn}_{3}$ fragments.
tours of the canonical MOs in Fig. S12, \dagger and get significantly stabilized to become $15 \mathrm{a}_{1}$ and 24 e (HOMO) in $\left[\mathrm{As}_{3} \mathrm{Nb}\right.$ $\left.\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ (Fig. 2). Because of this stabilization of the $3 \mathrm{e}^{\prime \prime}$ fragment MOs, the As_{3} ring prefers to accept three electrons to fill the HOMO, formally forming an $\mathrm{As}_{3}{ }^{3-}$ trianion in $\left[\mathrm{As}_{3} \mathrm{Nb}\right.$ $\left.\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$. On the other hand, the respective orbital interactions between $\mathrm{Nb} 5 \mathrm{~s} / \mathrm{d}_{z^{2}},\left(\mathrm{~d}_{x y}, \mathrm{~d}_{x^{2}-y^{2}}\right)$, and $\left(\mathrm{d}_{x z}, \mathrm{~d}_{y z}\right)$ orbitals and the $11 \mathrm{a}_{1}, 14 \mathrm{e}$, and 15 e fragment orbitals of $\mathrm{As}_{3} \mathrm{Sn}_{3}$ lead to significant bonding stabilization (Fig. 2), forming the bonding MOs $18 \mathrm{a}_{1}, 22 \mathrm{e}$, and 23 e in $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ (Fig. S12 \dagger). The remarkable bonding stabilization due to orbital interactions of $11 \mathrm{a}_{1}$ and 15 e of $\mathrm{As}_{3} \mathrm{Sn}_{3}$ with Nb makes it necessary for $\mathrm{As}_{3} \mathrm{Sn}_{3}$ to obtain five more electrons to accomplish a stable closedshell fragment. Consequently, $\mathrm{As}_{3} \mathrm{Sn}_{3}$ in $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ can be viewed formally as a pentavalent ligand with $\mathrm{As}_{3}{ }^{3-}$ and $\mathrm{Sn}_{3}{ }^{2-}$ units. This electron counting scheme accounts for the intrinsic reason why $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ exists as a trianion in the synthesized crystal.

The MO analysis of $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ (Fig. S12 \dagger) supports the above bonding picture, according to which the top $\mathrm{As}_{3}{ }^{3-}$ ligand should formally possess three $\mathrm{As}=\mathrm{As}$ double bonds, defined by HOMO-10(15a $)_{1} / \operatorname{HOMO}(24 e)$ and HOMO-9(16a $\left.{ }_{1}\right) /$ HOMO-6(21e) (Fig. S12 \dagger). The bonding of the $\mathrm{Sn}_{3}{ }^{2-}$ unit in the $\mathrm{As}_{3} \mathrm{Sn}_{3}{ }^{5-}$ ligand should be greater than three $\mathrm{Sn}-\mathrm{Sn}$ single bonds. These turn out not to be exact, suggesting that the ionic bonding picture is only a zeroth order approximation. The actual bonding in the system is much more covalent, as the calculated atomic charges show (Table $\mathrm{S} 4 \dagger$). Indeed, on the basis of the latest recommended covalent radii, ${ }^{22}$ the top limit of a single bond is $2.42 \AA$ for As-As and $2.80 \AA$ for $\mathrm{Sn}-\mathrm{Sn}$, indicating that the effective As-As bond order in the top As_{3} ligand in $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}(2.416-2.437 \AA \mathrm{~A})$ is close to a single bond and the $\mathrm{Sn}-\mathrm{Sn}$ bond order in the $\mathrm{As}_{3} \mathrm{Sn}_{3}$ ligand is markedly weaker than a single bond (3.123-3.145 A).

To reconcile the substantial discrepancies between the "formal" and "effective" bond orders in the As_{3} and Sn_{3} rings in $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$, it is instructive to take a closer look at all the MOs (Fig. S12 \dagger). The majorities of the MOs are highly mixed and involve a secondary component, the latter being responsible for the complicated, inter-layered electronic interactions, which manage to donate/back-donate the electrons between the Nb center and the As_{3} and $\mathrm{As}_{3} \mathrm{Sn}_{3}$ ligands, as well as between the Sn_{3} and As_{3} units within the $\mathrm{As}_{3} \mathrm{Sn}_{3}$ ligand. As a consequence, significant amounts of electrons are redistributed from the ligand layers to the interlayer $\mathrm{As}-\mathrm{Nb}, \mathrm{Nb}-\mathrm{As}^{\prime}$, and $\mathrm{As}^{\prime}-\mathrm{Sn}$ links (here As' labels an As atom in the bottom $\mathrm{As}_{3} \mathrm{Sn}_{3}$ ligand), whose distances are 2.770-2.791, 2.558-2.584, and $2.735-2.775 \AA$, respectively. These distances are compared to the upper limit of single bonds, $2.64 \AA$ for As-Nb and $2.75 \AA$ for As-Sn, ${ }^{15 d, 21}$ suggesting remarkable As-Nb/Nb-As' bonding (probably equivalent to six As-Nb single bonds) and somewhat weaker $\mathrm{As}^{\prime}-\mathrm{Sn}$ interaction. The calculated Wiberg bond orders ${ }^{23}$ (Table $\mathrm{S} 5 \dagger$) are fully consistent with the above analysis. In particular, the Wiberg bond order for $\mathrm{Nb}-\mathrm{As}^{\prime}$ is 1.00 , despite the fact that not a single $\mathrm{Nb}-\mathrm{As}^{\prime}$ bond can be identified from the MOs (Fig. $\mathrm{S} 12 \dagger$). In this picture, it is not surprising
that $\mathrm{Nb}-\mathrm{As}$ and $\mathrm{Nb}-\mathrm{As}^{\prime}$ show quite different bond distances. The As and As^{\prime} atoms differ in coordination environments and thus show different donor-acceptor properties. The top As_{3} ligand appears to be robust, resulting in weaker As-Nb bonds with respect to $\mathrm{As}^{\prime}-\mathrm{Nb}$, as anticipated.

Adaptive natural density partitioning (AdNDP) analysis ${ }^{24}$ offers a useful tool to capture the "effective" interlayer As-Nb, $\mathrm{Nb}-\mathrm{As}^{\prime}$, and $\mathrm{As}^{\prime}-\mathrm{Sn}$ bonding in $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$, as well as the reduced $\mathrm{As}-\mathrm{As}, \mathrm{As}^{\prime}-\mathrm{As}^{\prime}$, and $\mathrm{Sn}-\mathrm{Sn}$ bond orders. Fig. 3 illustrates the AdNDP results, which is an alternative, localized view of the true chemical bonding in $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ (Fig. $\mathrm{S} 12 \dagger$). This bonding pattern is relatively simple and straightforward: the Nb center forms six two-center two-electron ($2 \mathrm{c}-2 \mathrm{e}$) $\mathrm{As}-\mathrm{Nb} / \mathrm{As}^{\prime}-\mathrm{Nb} \sigma$ bonds, whereas the bowl-type $\mathrm{As}_{3} \mathrm{Sn}_{3}$ ligand is held together by six $\mathrm{As}^{\prime}-\mathrm{Nb} \sigma$ bonds with discernible contributions from Sn (that is, six $\mathrm{As}^{\prime}-\mathrm{Nb}-\mathrm{Sn} \mathrm{3c}-2 \mathrm{e} \sigma$ bonds). ${ }^{25}$ As a consequence of electron redistributions, the top As_{3} ligand has three $2 \mathrm{c}-2 \mathrm{e} \sigma$ bonds with a significantly reduced As-As bond order from 2 (Fig. $\mathrm{S} 12 \dagger$) to 1. For the $\mathrm{As}_{3} \mathrm{Sn}_{3}$ ligand, the Sn_{3} unit is now bound together via a single $3 \mathrm{c}-2 \mathrm{e} \mathrm{Sn}-\mathrm{Sn}-\mathrm{Sn} \sigma$ bond and there appears to be no $\mathrm{As}^{\prime}-\mathrm{As}^{\prime}$ bonds, because the As^{\prime} (valence 3) is associated with one $\mathrm{As}^{\prime}-$ Nb and two $\mathrm{As}^{\prime}-\mathrm{Sn} \sigma$ bonds, whereas the Sn atom (valence 2) forms two $\mathrm{Sn}-\mathrm{As}^{\prime} \sigma$ bonds. This analysis also indicates the structural integrity of $\mathrm{As}_{3} \mathrm{Sn}_{3}$ as one ligand, which cannot be further divided into an As_{3} ring and a Sn_{3} ring, because such an As_{3} ring does not exist in the bowl-like $\mathrm{As}_{3} \mathrm{Sn}_{3}$.

Overall, the only essentially delocalized bond in the system is the $3 \mathrm{c}-2 \mathrm{e} \mathrm{Sn}-\mathrm{Sn}-\mathrm{Sn} \sigma$ bond (Fig. 3), which is readily traced back to HOMO-1 $\left(19 a_{1}\right)$ in the canonical MOs (Fig. S12†). As mentioned above, the Sn_{3} unit has exhausted all valence electrons for the $\mathrm{Sn}-\mathrm{As}^{\prime} \sigma$ bonds. Thus the $3 \mathrm{c}-2 \mathrm{e} \mathrm{Sn}-\mathrm{Sn}-\mathrm{Sn} \sigma$ bond requires two extra electrons, resulting in the $\mathrm{Sn}_{3}{ }^{2-}$ charge state. From this delocalized $\mathrm{Sn}-\mathrm{Sn}-\mathrm{Sn} \sigma$ bond, one can view

Fig. 3 The AdNDP bonding pattern of $\left.\left[\mathrm{As}_{3} \mathrm{Nb}_{\mathrm{Ns}}^{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ (isovalue $=$ 0.05 a.u.). Only one bond is shown for each type for clarity. The lonepair electrons (As 4 s and Sn 5 s) are not shown. The occupation numbers (ONs) are indicated in the last row.
the $\mathrm{Sn}_{3}{ }^{2-}$ ring as being σ-aromatic, ${ }^{26}$ similar to the scenario of cyclopropanyl cations. Such an electron-deficient system is also reminiscent of the salt-like BaSn_{3} and the organic ligand stabilized $\left[\{\mathrm{Sn}(\mu-\mathrm{PCy})\}_{3}\right]^{2-}$, as well as $\left[\mathrm{Pb}_{5}\left\{\mathrm{Mo}(\mathrm{CO})_{3}\right\}_{2}\right]^{4-} .{ }^{27}$ Compared with benzene and cyclopropanyl cations, a large negative nucleus independent chemical shift (NICS) ${ }^{28}$ is obtained at the center of the $\mathrm{Sn}_{3}{ }^{2-}$ ring. The calculated NICS (0) value is -39.55 ppm for the $\mathrm{Sn}_{3}{ }^{2-}$ ring in 1 , whereas they amount to -7.46 and -43.48 ppm for benzene (π aromatic) and cyclopropane (σ aromatic), respectively. The σ-aromaticity in $\mathrm{Sn}_{3}{ }^{2-}$ renders the $\mathrm{As}_{3} \mathrm{Sn}_{3}{ }^{5-}$ ligand σ-aromaticity. While $\mathrm{As}_{3}{ }^{+}$ is also aromatic (Fig. $\mathrm{S} 8 \dagger$) as the cyclic bonding orbitals are all occupied and antibonding orbitals are all vacant, $\mathrm{As}_{3}{ }^{3-}$ with four more electrons added to the degenerate $3 \mathrm{e}^{\prime \prime}$ antibonding orbitals will cancel the aromaticity. The $\mathrm{As}_{3}{ }^{3-}$ ligand is nonaromatic. In short, $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$ is a flower-vase shaped cluster, in which a $\mathrm{Nb}(\mathrm{v})$ center is sandwiched by a nonaromatic $\mathrm{As}_{3}{ }^{3-}$ ring and a bowl-like, σ-aromatic $\mathrm{As}_{3} \mathrm{Sn}_{3}{ }^{5-}$ ligand. ${ }^{29}$ We believe that the non-planarity of the bowl-like $\mathrm{As}_{3} \mathrm{Sn}_{3}{ }^{5-}$ ligand is due to the remarkably strong $\mathrm{Nb}-\mathrm{As}^{\prime} \sigma$ interactions, which demand suitable $\mathrm{As}^{\prime}-\mathrm{As}^{\prime}$ distances.

3. Conclusions

Herein we report a novel vase shaped Zintl cluster, $\left[\mathrm{As}_{3} \mathrm{Nb}\right.$ $\left.\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right]^{3-}$, which has been synthesized and characterized. Quantum chemistry calculations confirm the high stability of the trianion cluster and provide understanding of the bonding essence. There exists a multi-center bonding among $\mathrm{Nb}-\mathrm{As}-\mathrm{Sn}$ and σ-aromaticity for the Sn_{3} ring, rendering high stability of the pentavalent $\mathrm{As}_{3} \mathrm{Sn}_{3}$ bowl as a ligand. Moreover, the present results show that the $\eta^{3}-\mathrm{As}_{3}$ ring is a good trivalent ligand upon coordination with metal d-orbitals. A further study of the reactivity of this new precursor $\mathrm{K}_{8} \mathrm{NbSnAs}_{5}$ and other transition metal organometallics will be interesting.

4. Experimental section

Materials, syntheses, and characterization

All manipulations and reactions were performed under a nitrogen atmosphere using standard Schlenk or glovebox techniques. Ethylenediamine (en) (Aldrich, 99\%) and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ (Aldrich, 99%) were freshly distilled by CaH_{2} prior to use. Toluene (tol) (Aldrich, 99.8\%) was distilled from sodium/ benzophenone under dinitrogen and stored under dinitrogen. K (Aldrich, 99\%), Na (Aldrich, 99.7\%), Nb powder (Aldrich, -200 mesh, 99.5\%), Sn (Aldrich, 99.5\%), As (Aldrich, 99.999%), CaH_{2} (Adamas-beta®, 95\%), and benzophenone (Aldrich, 99.5%) were used as received. [2.2.2]crypts ${ }^{30}$ (TCI, 98%) were dried in a vacuum for 1 d .

Synthesis of $\mathbf{K}_{\mathbf{8}} \mathbf{N b S n A s} \mathbf{5}_{\mathbf{5}}$

Following the synthesis strategy of $\mathrm{K}_{8} \mathrm{NbPbAs}_{5}$ by Sevov et al., ${ }^{31}$ we obtained $\mathrm{K}_{8} \mathrm{NbSnAs}_{5}$ by replacing Pb with Sn . The
corresponding elements $\mathrm{K}, \mathrm{Nb}, \mathrm{Sn}$ and As were mixed in a molar ratio of $8: 1: 1: 5$ and loaded in a tubular tantalum container, which was subsequently arc-welded under an argon atmosphere and sealed in an evacuated quartz tube. The mixture was heated at $750{ }^{\circ} \mathrm{C}$ for 72 hours and then cooled to room temperature at a cooling rate of $10^{\circ} \mathrm{C} \mathrm{h}^{-1}$. Black crystals were obtained. The powder X-ray diffraction pattern showed a small unknown phase in $\mathrm{K}_{8} \mathrm{NbSnAs}_{5}$ as a precursor; see the ESI (ESI; Fig. S6†).

Synthesis of $[K([2.2 .2] c r y p t)]_{3}\left[\mathrm{As}_{3} \mathbf{N b}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right] \cdot \mathrm{en} \cdot \mathrm{tol}$

In a 10 mL vial, $150 \mathrm{mg}(0.11 \mathrm{mmol})$ of $\mathrm{K}_{8} \mathrm{NbSnAs}_{5}$ and 300 mg (0.53 mmol) of [2.2.2]crypt were dissolved in 2 mL of ethylenediamine solution, and the mixture was allowed to stir vigorously for 4 h at room temperature. The resulting dark red solution was subsequently filtered through glass wool and transferred to a test tube, and then carefully layered by toluene $(2.5 \mathrm{~mL})$. After 5 days, black rod crystals of $[\mathrm{K}([2.2 .2] \text { crypt })]_{3}{ }^{-}$ $\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right] \cdot$ en tol appeared on the interfaces of the tube wall (35% based on $\mathrm{K}_{8} \mathrm{NbSnAs}_{5}$). It is worth noting here that a similar strategy was applied in the synthesis of $1 \infty\left[\mathrm{Rb}\left\{\mathrm{NbAs}_{8}\right\}\right]^{2-},\left[\mathrm{Co}_{2} @ \mathrm{Sn}_{17}\right]^{5-},\left[\mathrm{Ni} @ \mathrm{Sn}_{9}\right]^{4-}$ and the aforementioned M-Ge-As clusters. ${ }^{15 a, 17,32}$

X-ray measurement and structure solution of two complexes

Single crystal X-ray diffraction data of $\mathrm{K}_{8} \mathrm{NbSnAs}_{5}$ (Table 1) were collected on a Bruker Apex II CCD diffractometer with graphite-monochromated Mo $K \alpha$ radiation $(\lambda=0.71073 \AA$) at 298 K. Data processing was accomplished with the SAINT program. ${ }^{33}$ The structure was solved by direct methods and refined on F^{2} by full-matrix least squares using SHELXTL-97. ${ }^{34}$ Further details on the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: (+49) 7247-808-666; E-mail: crysdata@fiz-karlsruhe.de), on quoting the depository number CSD 428027. Single crystal X-ray diffraction data of $[\mathrm{K}([2.2 .2] \mathrm{crypt})]_{3}\left[\mathrm{As}_{3} \mathrm{Nb}\left(\mathrm{As}_{3} \mathrm{Sn}_{3}\right)\right] \cdot \mathrm{en} \cdot \mathrm{tol}$ (Table 1) were collected

Table 1 X-ray measurement and structure solutions of two complexes

Compound	$\mathrm{C}_{59.50} \mathrm{H}_{119.50} \mathrm{~N}_{8} \mathrm{O}_{18} \mathrm{~K}_{3} \mathrm{NbSn}_{3} \mathrm{As}_{6}$	$\mathrm{As}_{5} \mathrm{~K}_{8} \mathrm{NbSn}$
Formula weight	2250.93	899.00
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / c$	$C 2 / c$
a / \AA	$14.328(3)$	$31.330(9)$
b / \AA	$23.025(5)$	$9.395(3)$
c / \AA	$27.224(5)$	$13.367(4)$
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	$97.25(3)$	$95.423(7)$
$\gamma /{ }^{\circ}$	90	90
V	$8909(3)$	$3916.8(18)$
Z	4	8
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.678	3.049
$\mu\left(\mathrm{Mo}_{\mathrm{K} \alpha}\right) / \mathrm{mm}^{-1}$	3.369	11.916
Final R indices	$R_{1}=0.0588$,	$R_{1}=0.0382$,
$(I>2 \sigma(I))$	$\mathrm{w} R_{2}=0.1190$	$\mathrm{w} R_{2}=0.0620$
R indices (all data $)$	$R_{1}=0.1019$,	$R_{1}=0.0696$,
	$\mathrm{w} R_{2}=0.1336$	$\mathrm{w} R_{2}=0.0711$

on a Rigaku RAXIS-RAPID equipped with a narrow-focus, 5.4 kW sealed tube X-ray source (graphite-monochromated Mo K α radiation, $\lambda=0.71073 \AA$ Å) at 123 K . Data processing was accomplished with the PROCESS-AUTO processing program. All non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. All hydrogen atoms of the organic molecule were placed by geometrical considerations and were added to the structure factor calculations. CCDC 1012141 contains the supplementary crystallographic data for this paper.

Acknowledgements

This work was supported by the NSF of China (21171162, 21221062, 21573138), Jilin Province Youth Foundation (20130522132JH), SRF for ROCS (Chinese Ministry of Education), and the State Key Laboratory of Quantum Optics and Quantum Optics Devices (KF201402). H. J. Z. gratefully acknowledges the start-up fund from Shanxi University for support. The calculations were performed at the Tsinghua National Laboratory for Information Science and Technology. We thank Prof. Yong Pei for valuable discussions.

Notes and references

1 E. Zintl and A. Harder, Z. Phys. Chem., Abt. A, 1931, 154, 47.
2 (a) C. H. E. Belin, J. D. Corbett and A. Cisar, J. Am. Chem. Soc., 1977, 99, 7163; (b) J. D. Corbett and P. A. Edwards, J. Am. Chem. Soc., 1977, 99, 3313; (c) S. C. Critchlow and J. D. Corbett, Inorg. Chem., 1982, 21, 3286.

3 B. W. Eichhorn and R. C. Haushalter, J. Am. Chem. Soc., 1988, 110, 8704.
4 (a) B. Eichhorn and S. Kocak, Struct. Bonding, 2011, 140, 59; (b) S. Scharfe, F. Kraus, S. Stegmaier, A. Schier and T. F. Fässler, Angew. Chem., Int. Ed., 2011, 50, 3630; (c) R. S. P. Turbervill and J. M. Goicoechea, Chem. Rev., 2014, 114, 10807; (d) S. C. Sevov and J. M. Goicoechea, Organometallics, 2006, 25, 5678; (e) S. Joseph, M. Hamberger, F. Mutzbauer, O. Härtl, M. Meier and N. Korber, Angew. Chem., Int. Ed., 2009, 48, 8770; (f) F. Fendt, C. Koch, S. Gärtner and N. Korber, Dalton Trans., 2013, 42, 15548; (g) C. Schenk and A. Schnepf, Angew. Chem., Int. Ed., 2007, 46, 5314; (h) C. Schenk, F. Henke, G. Santiso-Quiñones, I. Krossingb and A. Schnepf, Dalton Trans., 2008, 4436; (i) N. K. Chaki, S. Mandal, A. C. Reber, M. Qian, H. M. Saavedra, P. S. Weiss, S. N. Khanna and A. Sen, ACS Nano, 2010, 4, 5813; (j) S. Mandal, A. C. Reber, M. Qian, R. Liu, H. M. Saavedra, S. Sen, P. S. Weiss, S. N. Khanna and A. Sen, Dalton Trans., 2012, 41, 12365; (k) S. Mandal, A. C. Reber, M.-C. Qian, R. Liu, H. M. Saavedra, S. Sen, P. S. Weiss, S. N. Khanna and A. Sen, Dalton Trans., 2012, 41, 5454; (l) Y. Wang, Q. Qin, J. Wang, R. Sang and L. Xu, Chem. Commun., 2014, 50, 4181.

5 M. J. Moses, J. C. Fettinger and B. W. Eichhorn, Science, 2003, 300, 778.
6 E. N. Esenturk, J. Fettinger, Y. F. Lam and B. Eichhorn, Angew. Chem., Int. Ed., 2004, 43, 2132.
7 E. N. Esenturk, J. Fettinger and B. Eichhorn, J. Am. Chem. Soc., 2006, 128, 9178.
8 J.-Q. Wang, S. Stegmaier, B. Wahl and T. F. Fässler, Chem. Eur. J., 2010, 16, 1793.
9 L. F. Cui, X. Huang, L. M. Wang, D. Y. Zubarev, A. I. Boldyrev, J. Li and L. S. Wang, J. Am. Chem. Soc., 2006, 128, 8390.
10 (a) C. M. Knapp, B. H. Westcott, M. A. C. Raybould, J. E. McGrady and J. M. Goicoechea, Angew. Chem., Int. Ed., 2012, 51, 9097; (b) C. M. Knapp, B. H. Westcott, M. A. C. Raybould, J. E. McGrady and J. M. Goicoechea, Chem. Commun., 2012, 48, 12183.
11 (a) L. Xu, A. Ugrinov and S. C. Sevov, J. Am. Chem. Soc., 2001, 123, 4091; (b) N. Korber and F. Richter, Angew. Chem., Int. Ed. Engl., 1997, 36, 1512; (c) J. M. Goicoechea, M. W. Hull and S. C. Sevov, J. Am. Chem. Soc., 2007, 129, 7885; (d) L. G. Perla, A. G. Oliver and S. C. Sevov, Inorg. Chem., 2015, 54, 872; (e) B. Weinert, A. R. Eulenstein, R. Ababei and S. Dehnen, Angew. Chem., Int. Ed., 2014, 53, 4704.

12 A. Spiekermann, S. D. Hoffmann and T. F. Fässler, Angew. Chem., Int. Ed., 2006, 45, 3459.
13 (a) F. Lips, R. Clérac and S. Dehnen, Angew. Chem., Int. Ed., 2011, 50, 960; (b) F. Lips, M. Hołyńska, R. Clérac, U. Linne, I. Schellenberg, R. Pottgen, F. Weigend and S. Dehnen, J. Am. Chem. Soc., 2012, 134, 1181; (c) B. Weinert, F. Weigend and S. Dehnen, Chem. - Eur. J., 2012, 18, 13589; (d) B. Weinert, F. Müller, K. Harms, R. Clérac and S. Dehnen, Angew. Chem., Int. Ed., 2014, 53, 11979; (e) R. Ababei, W. Massa, B. Weinert, P. Pollak, X. Xie, R. Clérac, F. Weigend and S. Dehnen, Chem. - Eur. J., 2015, 21, 386.
14 T. F. Fässler and S. D. Hoffmann, Angew. Chem., Int. Ed., 2004, 43, 6242.
15 (a) H. G. v. Schnering, J. Wolf, D. Weber, R. Ramirez and T. Meyer, Angew. Chem., Int. Ed. Engl., 1986, 25, 353; (b) B. W. Eichhorn, S. P. Matamanna, D. R. Gardner and J. C. Fettinger, J. Am. Chem. Soc., 1998, 120, 9708; (c) B. Kesanli, J. Fettinger and B. W. Eichhorn, J. Am. Chem. Soc., 2003, 125, 7367; (d) B. Kesanli, J. Fettinger, B. Scott and B. W. Eichhorn, Inorg. Chem., 2004, 43, 3840; (e) B. Kesanli, J. Fettinger and B. W. Eichhorn, Angew. Chem., Int. Ed., 2001, 40, 2300.
16 C. B. Benda, M. Waibel and T. F. Fässler, Angew. Chem., Int. Ed., 2015, 54, 522.
17 S. Mitzinger, L. Broeckaert, W. Massa, F. Weigend and S. Dehnen, Chem. Commun., 2015, 51, 3866.

18 (a) B. M. Cossairt, M.-C. Diawara and C. C. Cummins, Science, 2009, 323, 602; (b) B. M. Cossairt, N. A. Piro and C. C. Cummins, Chem. Rev., 2010, 110, 4164.

19 (a) A. Velian and C. C. Cummins, Chem. Sci., 2012, 3, 1003; (b) R. Ahlrichs, D. Fenske, K. Fromm, H. Krautscheid,
U. Krautscheid and O. Treutler, Chem. - Eur. J., 1996, 2, 238; (c) R. Ababei, W. Massa, K. Harms, X. Xie, F. Weigend and S. Dehnen, Angew. Chem., Int. Ed., 2013, 52, 13544; (d) F.-X. Pan, L.-J. Li, Y.-J. Wang, J.-C. Guo, H.-J. Zhai, L. Xu and Z.-M. Sun, J. Am. Chem. Soc., 2015, 137, 10954.
(a) Z.-M. Sun, H. Xiao, J. Li and L.-S. Wang, J. Am. Chem. Soc., 2007, 129, 9560; (b) F. S. Kocak, P. Zavalij, Y.-F. Lam and B. W. Eichhorn, Inorg. Chem., 2008, 47, 3515.
21 C. M. Knapp, J. S. Large, N. H. Rees and J. M. Goicoechea, Dalton Trans., 2011, 40, 735.
22 (a) P. Pyykkö and M. Atsumi, Chem. - Eur. J., 2009, 15, 12770; (b) P. Pyykkö, J. Phys. Chem. A, 2015, 119, 2326.
23 K. B. Wiberg, Tetrahedron, 1968, 24, 1083.
24 (a) D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys., 2008, 10, 5207; (b) D. Y. Zubarev and A. I. Boldyrev, J. Org. Chem., 2008, 73, 9251; (c) W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang and A. I. Boldyrev, Nat. Chem., 2010, 2, 202; (d) J. M. Mercero, A. I. Boldyrev, G. Merino and J. M. Ugalde, Chem. Soc. Rev., 2015, 44, 6519.

25 The delocalized $3 \mathrm{c}-2 \mathrm{e} \mathrm{As}$ ' $-\mathrm{Nb}-\mathrm{Sn}$ bonds are due to simultaneous participation of $\mathrm{Nb} 5 \mathrm{~s} / \mathrm{d}_{z}{ }^{2},\left(\mathrm{~d}_{x z}, \mathrm{~d}_{y z}\right),\left(\mathrm{d}_{x y}, \mathrm{~d}_{x^{2}-y^{2}}\right)$ orbitals in the σ-, out-of-plane π-, and in-plane π-type bonding with the $\mathrm{As}_{3} \mathrm{Sn}_{3}$ fragment. These $3 \mathrm{c}-2 \mathrm{e}$ bonds correspond to six $\mathrm{As}^{\prime}-\mathrm{Sn}$ single bonds expected in the classic Lewis model.
26 (a) A. E. Kuznetsov, A. I. Boldyrev, X. Li and L. S. Wang, J. Am. Chem. Soc., 2001, 123, 8825; (b) X. Li, A. E. Kuznetsov, H. F. Zhang, A. I. Boldyrev and L. S. Wang, Science, 2001, 291, 859; (c) A. E. Kuznetsov, A. I. Boldyrev, H. J. Zhai, X. Li and L. S. Wang, J. Am. Chem. Soc., 2002, 124, 11791; (d) A. E. Kuznetsov, K. A. Birch, A. I. Boldyrev, X. Li, H. J. Zhai and L. S. Wang, Science, 2003, 300, 622; (e) A. I. Boldyrev and L. S. Wang, Chem. Rev., 2005, 105, 3716; (f) A. N. Alexandrova and A. I. Boldyrev, J. Phys. Chem. A, 2003, 107, 554; (g) H. J. Zhai, L. S. Wang,
A. N. Alexandrova, A. I. Boldyrev and V. G. Zakrzewski, J. Phys. Chem. A, 2003, 107, 9319.

27 (a) T. F. Fässler and C. Kronseder, Angew. Chem., Int. Ed. Engl., 1997, 36, 2683; (b) P. Alvarez-Bercedo, A. D. Bond, R. Haigh, A. D. Hopkins, G. T. Lawson, M. McPartlin, D. Moncrieff, M. E. G. Mosquera, J. M. Rawson, A. D. Woodsa and D. S. Wright, Chem. Commun., 2003, 1288; (c) L. Yong, S. D. Hoffmann, T. F. Fässler, S. Riedel and M. Kaupp, Angew. Chem., Int. Ed. Engl., 1997, 44, 2092.
28 (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, J. Am. Chem. Soc., 1996, 118, 6317; (b) P. v. R. Schleyer, Chem. Rev., 2005, 105, 3433; (c) M. Sola, F. Feixas, J. O. C. Jimenez-Halla, E. Matito and J. Poater, Symmetry, 2010, 2, 1156; (d) P. Jin, F. Li and Z. Chen, J. Phys. Chem. A, 2011, 115, 2402; (e) Y. Li, F. Li and Z. Chen, J. Am. Chem. Soc., 2012, 134, 11269.
29 (a) E. Urnėžius, W. W. Brennessel, C. J. Cramer, J. E. Ellis and P. v. R. Schleyer, Science, 2002, 295, 832; (b) T. Murahashi, M. Fujimoto, M. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki and H. Kurosawa, Science, 2006, 313, 1104; (c) T. Murahashi, K. Usui, R. Inoue, S. Ogoshi and H. Kurosawa, Chem. Sci., 2011, 2, 117; (d) T. Hatanaka, Y. Ohki and K. Tatsumi, Angew. Chem., Int. Ed., 2014, 53, 2727.
30 [2.2.2]crypt: 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane.
31 F. Gascoin and S. C. Sevov, Inorg. Chem., 2002, 41, 2820.
32 (a) V. Hlukhyy, H. He, L. A. Jantke and T. F. Fässler, Chem. Eur. J., 2012, 18, 12000; (b) H. He, W. Klein, L.-A. Jantke and T. F. Fässler, Z. Anorg. Allg. Chem., 2014, 640, 2864; (c) M. M. Gillett-Kunnath, J. I. Paik, S. M. Jensen, J. D. Taylor and S. C. Sevov, Inorg. Chem., 2011, 50, 11695.

33 SMART and SAINT (software packages), Siemens Analytical X-ray Instruments, Inc., Adison, WI, 1996.
34 SHELXTL Program, version 5.1, Siemens Industrial Automation, Inc., Madison, WI, 1997.

[^0]: ${ }^{a}$ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
 E-mail: szm@ciac.ac.cn
 ${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100049, China
 ${ }^{c}$ Department of Chemistry \& Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.E-mail: junli@tsinghua.edu.cn
 ${ }^{d}$ Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
 ${ }^{e}$ William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
 $f_{\text {Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan }}$ 030006, China
 \dagger Electronic supplementary information (ESI) available: Experimental procedures, EDX and powder X-ray diffraction analyses results, mass spectra and structural parameters of both compounds. Optimized geometric parameters, charges, bond orders, NICS values, and bonding analysis results. CCDC 1012141. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6dt00028b
 \ddagger These authors contributed equally to this work.

