selectivity of the reaction (ee 74%, Table 1, conditions B, entry 5)). The use of BuOH, H2O and (R)-tryptophane led to the complete disappearance of asymmetric induction (ee 0%, Table 1, conditions B, entry 5). The change of the configuration of CoII stereogenic centre from ∆-1c to ∆-1c brought about loss of the enantioselectivity (ee 0%, Table 1, conditions B, entry 6). Evidently, both the configuration of the complex and the nature of the countercation were the most important factors in determining the asymmetric efficiency of the catalysts, with the K+ ion being much more efficient as compared to Li+ (Table 1, entries 7, 8). Na+ (Table 1, entries 1, 2) and H+ (Table 1, entries 3, 4).

Large lipophilic Cs+ (Table 1, entries 9, 10) and Bu4N+ (Table 1, entry 11) ions were also inefficient. Seemingly, the stability and structure of the ion pairs formed in solution by the

Table 1 Asymmetric trimethylsilylcyanation of benzaldehyde.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Conditions A</th>
<th>Conditions B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∆-1a</td>
<td>Yield (%)</td>
<td>Yield (%)</td>
</tr>
<tr>
<td>2</td>
<td>∆-1a</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>∆-1b</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>∆-1b</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>∆-1c</td>
<td>90 19 (R)</td>
<td>80–95 77 (R); 45 (R); 74 (R); 0’</td>
</tr>
<tr>
<td>6</td>
<td>∆-1c</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>∆-1d</td>
<td>80 65 (S)</td>
<td>83 6.5 (S)</td>
</tr>
<tr>
<td>8</td>
<td>∆-1d</td>
<td>80</td>
<td>85 0’</td>
</tr>
<tr>
<td>9</td>
<td>∆-1e</td>
<td>70</td>
<td>70 0’</td>
</tr>
<tr>
<td>10</td>
<td>∆-1e</td>
<td>75</td>
<td>75 0’</td>
</tr>
<tr>
<td>11</td>
<td>∆-1f</td>
<td>90</td>
<td>92 0’</td>
</tr>
</tbody>
</table>

- Conditions: benzaldehyde (1 mmol), TMSCN (1.1 mmol), catalyst 1 (2 mol%), CH2Cl2 (1 ml), stirring under Ar at ambient temperature. Conditons B: the same as A with a co-catalyst (0.1 mmol) added. Determined by chiral GLC. - Co-catalyst is triphenylphosphine. - Co-catalyst is DPPE [1,2-bis(diphenylphosphino)ethane]. - Co-catalyst is indole. - Co-catalysts are BuOH, H2O and (R)-tryptophane.

The concept was supported by the use of 18-crown-6 as an additive, which resulted in the complete disappearance of the asymmetric catalytic efficiency of ∆-1c.

The time dependence of the ee of the product reaction in the asymmetric trimethylsilylcyanation of benzaldehyde catalysed by ∆-1c (conditions B, c) is presented in Table 2. The steady increase of the ee of the product with time indicates the formation of a real catalytic species different from the original complex during the reaction.

In summary, we identified a new multimetallic catalyst for asymmetric C–C bond formation reactions. The results will serve as an interesting addition to the rapidly growing field of multimetallic catalysts in organic synthesis.4

This study was supported by the Russian Foundation for Basic Research (grant no. 02-03-32091).

References

An enantiomerically pure dinuclear triple-stranded helicate:

X-ray structure, CD spectroscopy and DFT calculations

Markus Albrecht, a, Ingo Janser, a Jörg Fleischhauer, a Yuekui Wang, a Gerhard Raabe a and Roland Fröhlich b

`a Institut für Organische Chemie der RWTH-Aachen, 52074 Aachen, Germany. E-mail: markus.albrecht@oc.rwth-aachen.de`

`b Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany`

DOE: 10.1070/MC2004v014n06ABEH002031

An enantiomerically pure dinuclear triple-stranded titanium(IV) helicate is formed from a dicatechol diimine ligand with an (R,R)-1,2-diaminocyclohexane spacer and its stereochemical features are elucidated by experimental and theoretical methods.

‘Chirality’ was an important argument in the 1874 proposals of van’t Hoff 1 and LeBel 2 that tetra-substituted carbon has to adopt a tetrahedral geometry. In coordination chemistry, Werner early on proposed and later showed that octahedral metal complexes with bidentate chelating ligands are chiral.3 Here no centre of chirality is present, as in the sense of the unsymmetrically substituted carbon atom, but the ligands adopt a helical arrangement, which has the structure of either a left handed (Λ) or a right handed (Δ) propeller.4

Since about one decade, we have been investigating the stereochemical features of dinuclear triple-stranded helicates, which are formed from dicatechol ligands and titanium(IV) ions.5 Hereby we found a systematic entry to control the relative stereochemistry of the two complex units. If both possess the same configuration (ΛΛ or ΔΔ), a chiral helicate is present, while the heterochiral isomer (ΔΛ) represents an achiral mesohelicate.6 Usually, the helicates are formed as racemic mixtures of the enantiomers, which in some cases are in equilibrium.
with each other. However, a few examples are known, where enantiomerically pure helicates are obtained by the separation of stereoisomers, by induction of chirality through counterions or by introduction of chiral substituents either in the spacer or at the termini of the ligands.

Here we present an example where we for the first time were able to obtain an X-ray structural analysis of an enantiomerically pure triple-stranded titanium(IV) helicate with dicatecholate ligands. We used our structural results and correlated them with CD-spectroscopic findings by the DFT investigation of the electronic properties of the titanium(IV) tris(catecholate) moiety.

The preparation and characterization of the dicatechol imine ligand L-H₂ and its complexes M₂[(L)₂Ti₄] (M = Na, K) were described earlier. Now, we were able to crystallise K₂[(L)₂Ti₄] from DMF–diethyl ether and to obtain the solid-state structure of K₂[(L)₂Ti₄]·8DMF·H₂O.

The solid-state structure of the complex is shown in Figure 1. Three ligands L and two titanium(IV) ions form a tetraanionic triple-stranded helicate in which the ligands wrap around the two metal centres. In order to do this, the substituents at the cyclohexane moieties have to adopt axial positions, resulting in a stretched molecule with a Ti–Ti separation of 10.263 or 10.375 Å (two independent molecules). Two of the four potassium counterions are located in the interior, each binding to two internal catecholate oxygen atoms and one DMF molecule and additional three DMF are bridging between the two cations. The remaining two potassium ions are bound to one terminus of the helicate. Those cations are bridging by solvent molecules to the next unit and form an infinite polymeric structure in the crystal.

The 1,2-diaminocyclohexane units in the spacer are R,R-configured and, therefore, chiral information is introduced, which controls the twist of the helicate. Both metal complex units adopt the ΔΔ-configuration, so that the helicate overall possesses the structure of a right handed triple-stranded helix.

1H NMR spectroscopy of the complex shows only half a set of ligand signals, which indicates configurational stability in solution. Relatively high optical rotation is observed for the complexes with [c]_D = –489° [acetone, c = 0.069 mmol dm⁻³, 296 K, K₂[(L)₂Ti₄]] and [c]_D = –369° [acetone, c = 0.025 mmol dm⁻³, 296 K, Na₂[(L)₂Ti₄]]. For comparison, ligand L-H₂ leads only to [c]_D = –58.4° [acetone, c = 11.275 mmol dm⁻³, 296 K].

K₂[(L)₂Ti₄] is the first configurationally stable triple-stranded enantiomerically pure titanium(IV) helicate, which could be structurally characterised. Therefore, we intended to investigate the CD spectrum of the complex and, in an independent study, confirm the stereochemistry at the complex units by TDDFT calculations.

The UV–VIS spectra of the complexes M₂[(L)₂Ti₄] in DMF are very similar showing two transitions for Na₂[(L)₂Ti₄] at 285 (ε = 53055) and 399 nm (ε = 25612), or for Na₂[(L)₂Ti₄] at 283 (ε = 49363) and 399 nm (ε = 26663). CD spectroscopy reveals the corresponding bands for Na₂[(L)₂Ti₄] at 268 (Δε = 9.31), 260.7 (296 K, Na₂[(L)₂Ti₄)] and 381.9 (75.76) nm (acetone, ε = 0.069 mmol dm⁻³, 296 K, K₂[(L)₂Ti₄]).

For comparison, ligand L-H₂ leads only to [c]_D = –58.4° [acetone, c = 11.275 mmol dm⁻³, 296 K].

Crystal data for [C₆H₄(NH₂)₂Ti₂(μ-OH)(C₆H₄(OH)₂)₂] [C₆H₄(NO₂)₂]K₄[(C₆H₄(NO₂)₂)₂]·2C₂H₅OH, M = 3941.35, monoclinic, space group P2₁/n (no. 4), a = 16.424(1), b = 27.9711(1) Å, c = 23.5811(1) Å, β = 104.63(1)°, V = 10481.8(9) Å³, d_M = 1.249 g cm⁻³, μ = 3.81 cm⁻¹, Z = 2, λ = 0.71073 Å, T = 198 K, 7512 reflections collected (2θmax = 45°), 6801 independent (Rint = 0.067) and 18955 observed reflections (I ≥ 2σ(I)), 2152 refined parameters, R = 0.085, wR₂ = 0.213. Flack parameter –0.012(3).

Atomic coordinates, bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or deposit@ccdc.cam.ac.uk). Any request to the CCDC for data should quote the full literature citation and CCDC reference number 256795. For details, see ‘Notice to Authors’, Mendelev Commun., Issue 1, 2004.
While the chirality of \(K_2[(L)_2] \) could be determined beyond any doubt by solid-state structure analysis of suitable single crystals, no such samples could be obtained for \(\text{Na}_2[(L)_2] \). We, therefore, decided to determine its configuration by comparison of measured and calculated CD spectra.

The CD spectrum of \(\text{Na}_2[(L)_2] \) was measured in DMF (\(c = 3.29 \times 10^{-3} \text{ mol dm}^{-3} \)) at room temperature employing an AVIV 62DS spectrometer. The CD curve [Figure 2(a)] shows positive Cotton effects at \(\lambda = 270 \) and 355 nm and negative ones at \(\lambda = 295 \) and 410 nm.

Since the complex \(\text{Na}_2[(L)_2] \) is too large for a theoretical treatment at a reasonable level, we performed quantum-chemical calculations for the \(D_3 \)-symmetric model compound \(\text{Na}_2[(\text{cat})_2] \) where \(\text{cat} \) is the catecholate dianion (\(\text{C}_{6}\text{H}_4\text{O}_2^{2-} \)) and the two sodium cations are located on the threefold axis defined by the Ti atom and the centres of the equilateral \(\text{O}_3 \) triangles. The structure of this model compound has been optimised within the framework of DFT theory employing the B3LYP functional and a valence triple-\(\zeta \) basis set augmented by polarization functions (TZVP). As implemented in the TURBOMOLE program, \(D_3 \) symmetry has been imposed in the optimization process, and all calculations have been performed for the \(\Delta \) isomer of the model compound. The optimised structure of \(\text{Na}_2[(\text{cat})_2] \) is shown in Figure 3. The nine highest occupied and six lowest unoccupied Kohn–Sham orbitals (KSOs) are shown in Figure 4.

The \(\text{Ti}–\text{O} \) distance of 1.986 Å obtained in the geometry optimization of \([(\text{cat})_2](\text{Ti}) \) might be compared with the experimental values obtained for \(K_2[(L)_2] \). Ti–O bond lengths of 1.930–1.990 Å are observed (average of 1.96 Å), which correspond to those obtained by calculation. In \([\text{Et}_3\text{NH}]_2[(\text{cat})_2] \) averaged Ti–O distances of 1.966 Å are found.

Using the optimised geometry, we calculated the CD spectrum of \(\text{Na}_2[(\text{cat})_2] \) by time-dependent density functional theory and the origin-independent dipole velocity formalism. The calculations were performed with the same functional and basis set as in the geometry optimizations. The calculated CD curve has been obtained as a sum of Gaussians, each of which has been centred at the wavelength of the corresponding transition and multiplied with its rotational strength. The empirical formula \(\Gamma = \lambda G_k^2 \) has been used to calculate the half bandwidth (\(\Gamma \)) of the Gaussians, where \(\lambda \) is the calculated transition wavelength, and the parameter \(k \) is equal to 0.00375. The resulting calculated spectrum is shown in Figure 2(b).

Compared with the experimental CD curve, the calculated bands are shifted by about 30 nm to the red. A very weak band calculated at about 706 nm lies outside the measured range. Moreover, its rotational strength is positive according to the dipole velocity and negative with the dipole lengths formalism, and we concluded that this band will probably be too weak to be observed under the conditions of the experiment. Another theoretically predicted Cotton effect, which has no experimental counterpart, is the one calculated at 564 nm. The corresponding rotational strength is also low compared with the values for the other bands. In addition, this band is not predicted unambiguously since in this case the dipole velocity and the dipole length formalism also give different signs. The reason for the absence of the corresponding Cotton effect from the measured spectrum might be that due to its weakness this band is buried under the relatively broad and strong negative Cotton effect with a maximum observed at 408 nm. We identify this Cotton effect with the one calculated at \(\lambda = 446 \) nm. This band is almost entirely due (95.1%) to a charge-transfer transition from the HOMO (\(\Psi_{19a} \)), which consists of the \(\pi \) orbitals of the \(\text{C}_6\text{H}_4\text{O}_2^{2-} \) ligands, to the unoccupied orbital pair (\(\Psi_{33e} \) and \(\Psi_{34e} \)) above the LUMO almost entirely located at the Ti atom (\(d_{xy}, d_{x^2–y^2} \)). The Cotton effect calculated at 382 nm is strongly positive, and we correlate it with the one observed at 355 nm. This band is also due to charge transfer from \(\pi \) orbitals at the catecholate ligands (\(\Psi_{33e} \) and \(\Psi_{34e} \), 55.6% and 38.5% to titanium \(d \)-orbitals (\(\Psi_{34e} + d_{xy}, \Psi_{32e} + d_{x^2–y^2} \)). The negative band calculated at 330 nm is assigned to the one observed at 295 nm. Here we have an almost pure (99.1%) charge transfer from ligand \(\pi \) orbitals (\(\Psi_{33e} \)) to an orbital consisting of \(s \) and \(p \) functions at the sodium atoms (\(\Psi_{19a} \)). Finally, we identify the positive band calculated at 291 nm with the one observed at 270 nm. Again the main contribution (70.8%) to this Cotton effect comes from a charge-transfer transition from \(\pi \) orbitals at the ligands (\(\Psi_{33e} \)) to titanium \(d \)-orbitals (\(\Psi_{34e} \)).

It might be argued that the \(–\text{HC}≡\text{N}–\text{C}– \) moieties of the spacer units significantly contribute to the spectral properties of compound \(\text{Na}_2[(L)_2] \). We, therefore, performed additional TDDFT calculations for the CD spectrum of a model compound, where one ortho hydrogen atom of the cat ligands was replaced by the –\(\text{HC}≡\text{N}–\text{Me} \) unit. Again the signs of the four strongest Cotton effects calculated at wavelengths > 275 nm
agree with those in the observed spectrum, and we conclude that the $\text{HCl} = \text{N} - \text{C}$ units only influence the short-wavelength part of the spectrum.

Thus, the signs of all CD bands observed for $\text{Na}_2[(\text{L})_2\text{Ti}_3]$ between 250 and 600 nm agree with those calculated for the Δ isomer of our model compound $\text{Na}_2[(\text{cat})\text{Ti}]$ (and also for $\text{Na}_2[(\text{cat-}\alpha\text{-HC} = \text{N} - \text{Me})_3\text{Ti}]$). We, therefore, deduced that as was expected from the X-ray structural results for $\text{K}_4[(\text{L})_2\text{Ti}_3]$ the configuration at $\text{Na}_4[(\text{L})_2\text{Ti}_3]$ is also Δ.

Following the presented investigations we now have an instrument in hand to assign the stereochemistry of titanium(IV) tris catecholate complex units in metallasupramolecular aggregates with a high probability without X-ray structure analysis.

This study was supported by the Deutsche Forschungsgemeinschaft (GK 440).

References
17 (a) R. Woody, private communication; (b) E. N. Voloshina, G. Raabe, M. Estermeier, B. Steffan and J. Fleischhauer, Int. J. Quantum Chem., 2004, 100, 1104.

Received: 14th September 2004; Com. 04/2356

Synthesis of 1S,5R- and 1R,5S-glycoluriles by diastereospecific β-ureidoalkylation of (S)/(R)-N-carbamoyl-α-amino acids with 4,5-dihydroxyimidazolidin-2-one

Il’ya E. Chikunov, aAngelina N. Kravchenko, aPavel A. Belyakov, aKonstantin A. Lyssenko, bVladimir V. Baranov, aOleg V. Lebedev a and Nina N. Makhova a

aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
Fax: +7 095 135 5328; e-mail: kani@ioc.ac.ru
bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
Fax: +7 095 135 5085; e-mail: kostya@xrlab.ineos.ac.ru

A diastereospecific method for the synthesis of individual enantiomers of 1S,5R- and 1R,5S-glycoluriles has been developed based on the β-ureidoalkylation of (S)/(R)-N-carbamoyl-α-amino acids with 4,5-dihydroxyimidazolidin-2-one.

We have shown previously 1–3 that glycoluriles are a new promising class of psychotropic compounds. It was found later that they also have other types of biological activity. In particular, they have cancer-control activity 4 and influence the cytochrome P-450 dependent monoxygenase function of liver. 5

Scheme 1

Mendeley Comm. 2004 253