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An approach of atomic orbitals in molecules (AOIM) has been developed to study the atomic

properties in molecules, in which the molecular orbitals are expressed in terms of the optimized

minimal atomic orbitals. The atomic electronegativities are calculated using Pauling’s

electronegativity of free atom and are employed to find the electronegativity equilibrium in

molecules and to describe the amphoteric properties of the transition metals from the groups 4 to

10. AOIM can also improve the numerical stability and accuracy of the original Mulliken

population analysis.

1. Introduction

Although the molecular orbital (MO) theory has achieved

great success, it can hardly replace the chemical bond (CB)

theory completely in interpreting the electronic structure

properties, such as the atomic charge, electronegativity,1 ionic

character of bond, bonds in transition metal complexes. MO

theory based on the variation of total energy is adept in the

delocalized properties of molecules, while CB theory esta-

blished on the electronic varieties of atoms in molecules

concerns with the local properties, in particular with the

electron distribution and transfer among the atoms. The task

to combine them is to express the molecular wave functions in

terms of a set of suitable atomic orbitals (AO).

In the natural population analysis,2 the AOs in a molecule

are divided into the ‘‘minimal’’ set and the ‘‘Rydberg’’ set by

their occupancy. The ‘‘minimal’’ set corresponds to all the

occupied atomic orbitals in the ground state, and the ‘‘Ryd-

berg’’ set consists of the remaining (formal unoccupied)

orbitals. Liu and Li applied this method to improve the

Mulliken population analysis,3,4 and had obtained the reason-

able populations on the minimal basis set. Their work con-

firmed that the calculated populations were fairly independent

of the choice of the basis sets, and thus concluded that the

minimal basis set was the key element in analyzing the proper-

ties of atoms in molecules. Our approach of atomic orbitals in

molecules (AOIM) is to express MOs in terms of minimal basis

set characterized by the variable z’s, i.e. the exponents of the

corresponding AOs that may be determined by the molecular

wave functions posteriorly.

Our work is organized as follows. In section 2, after the

principle and implement of AOIM are discussed, our program

AOIM1.05 is outlined, and the resulted optimized-z’s of

valence shells of free atoms are compared with those from

the energy optimization. In section 3, we generalize and apply

the concept of the atomic electronegativity to atoms in any

chemical systems based on the optimized exponents of Slater-

type orbitals, and the behaviors and applications of the

general electronegativity are discussed briefly. In section 4,

we compare the Mulliken population analysis within the frame

of AOIM to the original Mulliken population analysis, po-

pular natural population analysis, and the experimental values.

Finally our conclusions are summarized in section 5.

2. Atomic orbitals in molecules

In MO theory, the accurate expression of the molecular wave

function needs large basis set including the additional basis

sets such as polarizations. As a consequence, however, these

additional basis sets may not have clear physical meaning

directly associated with the original atoms because of their

high energy levels and/or large sizes. Therefore, it is difficult to

express the atomic properties properly by such extended basis

sets. The key to interpret and predict atomic properties in

molecules is to find a suitable basis set to clarify the nature and

variety of atoms in molecules.

In CB theory, a molecule is described by a group of bonded

atoms such that MOs can be expressed in terms of the linear

combinations of AOs. Such AOs, usually described by certain

atomic basis sets, should inherit the basic atomic nature from

free atoms. In a free atom, the simplest atomic basis sets are

hydrogen-like orbitals with the principle quantum number n,

the angular-momentum quantum number l, and the magnetic

quantum number mz.

On the other hand, compared to the AOs in free atoms, the

radial parts of AOs in molecules contract or expand and the

degeneracy of AOs in the same subshells may be lifted as the

spherical symmetry of atom is broken. The anisotropies of the

potential and electron distribution in molecules lead further to

the directionalities of covalence bonds. These variances of

radial functions and directionalities of AOs denote the vari-

eties of atoms in molecules.

a Key Laboratory of Chemical Biology and Molecular Engineering of
the Education Ministry, Institute of Molecular Science, Shanxi
University, Taiyuan, Shanxi, 030006, China. E-mail:
luhg@pku.org.cn.; Fax: 86-351-7011022; Tel: 86-351-7011022

bDepartment of Chemistry, North Carolina State University, Raleigh,
NC 27695-8204, USA

cCollege of Chemistry and Molecular Engineering, Peking University,
Beijing, 100871, China

340 | Phys. Chem. Chem. Phys., 2006, 8, 340–346 This journal is �c the Owner Societies 2006

PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics



In our method, the highest occupied subshells have been set

as 1s for H–He, 2s for Li–Be, 2p for B–Ne, 3s for Na–Mg, 3p

for Al–Ar, 4s for K–Ca, 3d for Sc–Zn, 4p for Ga–Kr. We

believe that the additions of AOs with higher quantum num-

bers are unnecessary for analysis of atomic properties.

Then, the preferable basis set should be the set of single-z
hydrogen-like orbitals of atoms (the minimal basis set) with

different radial functions and directionalities for analyzing the

atomic properties of atoms in molecules.

However, employing the polynomials as the pre-exponential

factors of radial parts of hydrogen-like AOs usually makes the

computations complicated. Therefore, we replaced these AOs

by the corresponding Slater-type orbitals (STO) wnlm =

NsRnl(z,r)Ylm(y, f), where Ns is the normalization factor,

Ylm(y, f) the spherical harmonics, Rnl(z,r) = rn�1e�zr the

radial function, and z the parameter of n, l, and mz in

molecules. As the linear combinations of STOs, the single-z
AOs are equivalent to the single-z STOs in expressing wave

functions. Hereafter we would use the single-z STOs to analyze

the properties of atoms in molecules and the term ‘‘minimal

basis set’’ for the basis set of single-z STOs.

Now, following the procedure of Sanchez-Portal et al.,6 we

may transform the basis sets employed in the calculations into

the minimal sets for expressing the MOs. Suppose n singly

occupied MOs ci (i = 1, n) can be written as linear combina-

tions of the basis set {fm}:

ci ¼
X
m

Cimfm; ð1Þ

and the wave function C is expressed by a Slater determinant

in terms of ci

C = |c1. . .cn|. (2)

By Löwdin orthogonalization,7 ci can also be written as a

linear combination of the orthonormal basis set {f0m} as

ci ¼
X
m

C 0imf
0
m; ð3Þ

and

f0m ¼
X
n
ðS�1=2Þnmfn ; ð4Þ

in which S�1/2 is the square root of the inverse overlap matrix

of fm’s and Smn= hfm|fni. On the other hand, one may try the

minimal basis sets {ws} for all the atoms, and the new overlap

matrix Sm is defined by Sm
st = hws|wti. The orthonormal STOs

w0s’s are also obtained from the Löwdin orthogonalization

w
0
s ¼

X
t

½ðSmÞ�1=2�tswt: ð5Þ

The basis sets {w0s} and {f0m} are connected by the coefficients

C0mis :

Cis
0m¼

X
n

w0s
� ��f0v�C 0in : ð6Þ

Then the projected MO cm
i can be expressed as

cm
i ¼

X
s

Cis
0mw0s ð7Þ

Among the commonly used basis sets, namely the single-z (i.e.
the minimal), double-z, and double-z with polarization, the

minimal basis set is the least basis set, and the double-z with

polarization is the most and usually employed in accurate

calculations. Because of less completeness of the minimal basis

set, some electrons must be spilled if projecting large-basis-set

space to the minimal-basis-set space. The electron spilling may

arise from three origins: (1) the radial parts of STOs contract

or expand inevitably in the molecules compared to those in the

free atoms and the directions of p and d valence orbitals

should be reoriented in the molecules; (2) one radial function

cannot exactly replace a linear combination of two or more

radial functions; and (3) the minimal basis set for higher

quantum number is not well-defined.

The first type of the electron spilling is a consequence of

intrinsic difference between the free atoms and the atoms in

molecules such that the quality of projection may be evaluated

by the value of the incompleteness D, namely, the spilling

parameter of electrons:

D ¼
Xocc
i

di ¼
Xocc
i

½1�
X
s

ðCis
0mÞ2�; ð8Þ

where di is the number of the spilling electrons on the i-th MO.

This spilling parameter is a function of all the exponents zi’s of
STOs and the reorientation of atoms in the molecule. By mini-

mizing the incompleteness for all the occupied MOs, one may

obtain a new set of AOs in the molecule. After the incompleteness

D is optimized to a minimum, the z-optimized STOs would

mainly represent varieties of atoms in the molecule. From our

calculation of free atoms, the di’s of s and p orbitals are less than

0.03 and those of d orbitals less than 0.06, which shows that the

main component of molecular wave function has been retained.

The second type of the electron spilling would have some

transferability between free atoms and atoms in molecules and

the third type of electron spilling should be relatively small and

can be ignored. Then we could impose to normalize each MO

in the minimal optimized basis set for an intact total popula-

tion, and the corrected MO is

cnorm
i ¼

X
s

Cnorm
is ws; ð9Þ

where

Cnorm
is ¼

X
t

Copt
it

ð1� diÞ
1=2
½ðSoptÞ�1=2�ts; ð10Þ

where Cit
opt is the coefficient of MO in the optimized minimal

basis set and (Sopt)�1/2 is the square root of the inverse overlap

matrix of the optimized STOs. All atomic properties of AOIM

are based on this projected molecular wave function Cm:

Cm = |c1
norm. . .cn

norm|. (11)

By such correction, the accurate orbital populations (o2.003)

appear in free atoms H–Kr, which implies the reasonability of

the correction of normalization.

Implement of AOIM

We have developed the program AOIM1.0 to calculate the

optimized minimal basis set of molecules based on the
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‘‘formcheck’’ file of Gaussian03.8 The procedure of the calcu-

lation of the projection is simple because only the overlap

integrals and the Löwdin orthogonalization of STOs are

needed. To simplify the overlap integral, the STO-6G9 func-

tions are used instead of STOs. The L-BFGS-B (i.e. the

limited-memory quasi-Newton code for large-scale bound-

constrained or unconstrained optimization) procedure10 is

used to optimize the exponents and the spherical azimuths

of STOs. Because there is no analytical relation between the

incompleteness D and the parameters of STOs, the partial

derivatives of D with respect to zi’s and the spherical azimuths

must be calculated numerically and consequently the calcula-

tions of the second partial derivatives are time-consuming. The

L-BFGS-B procedure requires only the computations of the

function value and its derivatives, which improves efficiency of

the optimization.

The criterions of minimizing D are that (1) the change of D is

sufficiently small (o10�5), or (2) the projected gradients of D
with respect to zi’s and spherical azimuths are sufficiently small

(o10�3) as in principle they should equal zero at the local

minimum of D.
By default all wave functions were obtained using 6-31G**

basis set at Hatree-Fock (HF) level in the geometric optimum

by Gaussian03 program. The z’s of STOs were optimized by

the program AOIM1.0. The natural population analysis and

the original Mulliken population analysis were implemented

by Gaussian03, while the AOIMMulliken population analysis

and all Mayer bond order11 analysis by AOIM1.0. The orbital

populations in section 3 were calculated from the AOIM

Mulliken population analysis.

Verification of AOIM

To verify the results of AOIM, the optimized-z’s were calcu-

lated by AOIM1.0 and compared with those obtained from

the energy optimization calculations12 for valence shells of free

atoms H–Kr (see Table 1). The exponents of the s orbitals

(zs’s) from both optimizations are remarkably close and the

zp’s of p orbitals and the zd’s of d orbitals from AOIM

calculations are about 0.12(7%) and 0.45(12%) less than those

from the energy optimization. The deviations of the p and d

orbitals maybe come from the incompleteness of 6-31G**

basis sets used in the calculations of the wave functions. But

it does not change the conclusion that z’s from the wave

function optimization are consistent with those from energy

optimization.

3. General electronegativity

The electronegativity is the measurement of the power of an

atom in a molecule to attract electrons.1 The traditional

Pauling’s definition of electronegativity is thermochemical,

and the difference of the electronegativities between the atoms

X and Y is defined (in units of eV1/2) as wX � wY = [EXY �
(EXX � EYY)

1/2]1/2, where EXX, EYY and EXY are bonding

energies of the X-X, Y-Y, and X-Y type molecules, respec-

tively. There are also other scales of the electronegativity, for

example, the Mulliken scale from the ionization energies and

the affinity energies of atoms,15 the Allred and Rochow scale

from the electrostatic force exerted on the valence electrons,16

the Allen’s spectroscopic electronegativity14 and the Nagle

scale from the atomic polarizability.17 Allen defined the elec-

tronegativity as the average one-electron energy of valence-

shell electrons in ground free atoms. Then by the Aufbau

Principle, the subshells are specified by the number of s and p

electrons and thus the electronegativity may be expressed in

terms of a per-electron (or one-electron energy) basis as

wspec = (mes + nep)/(m + n), (12)

where m and n are the number of s and p valence electrons,

respectively.14 The es and ep, usually referred to as single-

electron orbital energies, are the change of the total energy

when a single electron of the orbital is removed from the atom.

In other ways, Hinze and Jaffe proposed the orbital electro-

negativity on the Mulliken scale,18 and Sanderson postulated

the principle of equalization of electronegativity,19 and Parr

et al. defined the absolute electronegativity as the negative

value of the electronic chemical potential from density func-

tional theory and gave a proof of the electronegativity equal-

ization theorem.20

Table 1 The exponents of STOs in the valence shells and the
electronegativities (Pauling units) of elements H–Kr

C&Ra AOIM

Atom zs zp/zd zs zp/zd wP
b wspec

c wz wz(d)

H 1.00 1.02 2.20 2.30 2.31
He 1.69 1.62 4.16 3.83
Li 0.64 0.67 0.98 0.91 0.93
Be 0.96 1.00 1.57 1.58 1.52
B 1.29 1.21 1.32 1.19 2.04 2.05 2.02
C 1.61 1.57 1.61 1.49 2.55 2.54 2.51
N 1.92 1.92 1.90 1.79 3.04 3.07 3.02
O 2.25 2.23 2.23 2.06 3.44 3.61 3.51
F 2.56 2.55 2.55 2.34 3.98 4.19 4.03
Ne 2.88 2.88 2.86 2.68 4.79 4.58
Na 0.84 0.88 0.93 0.87 1.01
Mg 1.10 1.09 1.31 1.29 1.33
Al 1.37 1.36 1.37 1.04 1.61 1.61 1.57
Si 1.63 1.43 1.62 1.29 1.90 1.92 1.86
P 1.88 1.63 1.86 1.53 2.19 2.25 2.16
S 2.12 1.83 2.09 1.72 2.58 2.59 2.43
Cl 2.36 2.04 2.32 1.93 3.16 2.87 2.72
Ar 2.59 2.26 2.56 2.15 3.24 3.02
K 0.87 0.86 0.82 0.73 0.83
Ca 1.10 1.08 1.00 1.03 1.10
Ga 1.77 1.56 1.82 1.35 1.81 1.76 1.84
Ge 2.01 1.70 2.04 1.60 2.01 1.99 2.04
As 2.24 1.86 2.24 1.82 2.18 2.21 2.25
Se 2.44 2.07 2.44 1.99 2.55 2.42 2.44
Br 2.64 2.26 2.63 2.17 2.96 2.68 2.65
Kr 2.83 2.44 2.81 2.36 2.97 2.86
Sc 1.16 2.37 1.15 1.65 1.36 1.15 1.18 2.14
Ti 1.20 2.71 1.20 2.46 1.54 1.28 1.25 3.32
V 1.24 2.99 1.26 2.72 1.63 1.42 1.33 3.70
Cr 1.28 3.25 1.18 2.75 1.66 1.57 1.22 3.75
Mn 1.32 3.51 1.19 2.97 1.55 1.74 1.24 4.11
Fe 1.36 3.73 1.38 3.37 1.83 1.79 1.48 4.70
Co 1.39 3.95 1.42 3.56 1.88 1.82 1.53 4.99
Ni 1.43 4.18 1.46 3.76 1.91 1.80 1.59 5.31
Cu 1.46 4.40 1.50 3.95 1.90 1.74 1.64 5.46
Zn 1.49 4.63 1.54 4.15 1.65 1.60 1.68

a Clementi and Raimondi, ref. 12. b Pauling, data from ref. 13.
c Allen, ref. 14.
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Because the energy e of the atomic orbital is approximately

equal to �z2 (in units of Rydbergs) in free atoms, z should be a

crucial parameter to represent the properties of atomic orbitals

as well as atoms. As the difference is very small between zs and
zp, the average energy of single s or p valence electron esp is

�esp ¼
�ðnsz2s þ npz

2
pÞ

ns þ np

�
nszs þ npzp
ns þ np

� �2

¼ z2sp;

ð13Þ

where zsp is the average exponent and ns and np are popula-

tions of s and p orbitals, respectively. The zsp/n
1/2 [in units of

Rydberg1/2, n is the principle quantum number of sp shell] vs.

conventional electronegativity values on Pauling’s scale13 is

plotted in Fig. 1 for the main group elements of the first four

periods (except Cl, Br, and the noble gases), and the correla-

tion coefficient between the two sets of values is 0.997 with the

standard error 0.07. A linear least-squares fit of the data can

be given as

wz = 2.526zsp/n
1/2 � 0.262, (14)

where wz is the electronegativity in the Pauling units derived

from the optimized-z’s. The wz’s calculated from eqn (14) along

with electronegativity values from other sources are also

tabulated in Table 1.

Once the wave function is known, the optimized-z’s of AOs

can be calculated by AOIM, and the electronegativities of

atomic orbitals and atoms are evaluated from eqn (14). This

electronegativity, called the general electronegativity, is the

measurement of the power of an atom in molecular environ-

ments to attract electrons.

Electronegativity of ion

The electronegativities of ions were calculated and plotted in

Fig. 2. It clearly shows that: (1) electronegativities rise as the

number of electrons decreases and vice versa; (2) the electro-

negativities of all the main group elements change approxi-

mately as linear functions of the atomic charges; and (3) the

amplitude of electronegativities is no more than 0.5 on the

Pauling’s scale for gaining or losing one electron in their

valence shells. These conclusions are all consistent with the

common sense.

Electronegativity in homonuclear molecule

The electronegativities were also calculated for the atoms in

simple homonuclear molecules such as H2(2.73), N2(3.15),

O2(3.60), F2(4.08), Cl2(2.75), and Br2(2.68). Because there is

no electron transfer between atoms, their atomic charges are

zero and the increments of electronegativities only come from

orbital overlaps in covalent bonds. The order of the incre-

ments is H2(0.42) c N2(0.13) > O2(0.09) > F2(0.05) >

Cl2(0.03) E Br2(0.03).

Electronegativity equilibrium in molecules

The principle of electronegativity equalization proposed by

Sanderson19 is that when two or more atoms with different

electronegativity combine, they become adjusted to the same

intermediate electronegativity within the compound. In a bond

between two unlike atoms, the bonding electrons are prefer-

entially and partially transferred from the less electronegative

to the more electronegative atom.

In AOIM, the electronegativity rises as the number of

electrons decreases in sp orbitals and the orbital overlaps raise

the electronegativity only. When the atoms form a molecule,

the electrons transfer from the less electronegative to the more

electronegative atom, so that the difference of the electrone-

gativities Dwm between the bonded atoms in a molecule is less

than Dwa between the free atoms. For example, Dwm = 0.56 in

HF is less than Dwa = 1.72 between atomic fluorin and

hydrogen.

Our results are in agreement with Sanderson’s postulation

of the principle of electronegativity equalization (Dwm = 0).

Nevertheless, no theory proves general electronegativities to

be equal in a molecule. On the other hand, because the

projected gradients of incompleteness with respect to the

optimized zi’s and hence wz’s should equal zero in principle,

we conclude that atoms would become adjusted to electro-

negativity equilibrium in a molecule.

Fig. 1 Correlation between zsp/n
1/2 and Pauling electronegativity.

Fig. 2 General electronegativity wz vs. rows (dash line) and atomic

charges (solid line) for some main group elements.
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Electronegativity of transition metal

The electronegativity of a transition metal is usually deter-

mined by the s and d orbitals in the valence shell. We propose

two electronegativities for transition metals: s and d electro-

negativity. Our results in Table 1 indicate that the electro-

negativities of s orbitals are always less than 2.0 so that the s

orbitals could be treated as metal orbitals as usual and the d

electronegativities are larger than 3.0 (except 2.14 for Sc) so

that these d orbitals should be treated as non-metal-like

orbitals. Now the transition metals of group 4 to 10 can be

taken as amphoteric elements whose s orbitals are electron

donors and unfilled d orbitals are electron acceptors.

Bonds between amphoteric species

Based on the amphoteric character of some transition metals,

the Lewis acid and base theory can be generalized to metal

clusters and metal carbonyl complexes.

Because the electronegativities of amphoteric elements are

either less than 2.0 or larger than 3.0, the metal atoms could be

bonded in the type of ionic bond Ans–B(n�1)d, covalent bond

Ans–Bns or A(n�1)d–B(n�1)d. For example, in Fe2(S = 9), both

irons are neutral while the orbital charges are 3d�0.504s+0.50,

indicating two ionic bonds in Fe2, i.e. Ans - B(n�1)d and

Bns - A(n�1)d. The total Mayer bond order11 of Fe–Fe is 2.0,

in which the components of 4s–4s, 3dz2–3dz2, 3dxz–3dxz,

3dyz–3dyz are all about 0.5.

The ligand of metal carbonyl complex is monoxide carbon.

The orbital electronegativities of the carbon atom are 2.53 for

2s and 2.59 for 2px and 2py in CO, which lie between two

electronegativities of amphoteric elements while its electron

configuration is 2s1.752px
0.582py

0.58. These indicate that the 2s

orbital could be the electron donor and the 2px and 2py are

electron acceptors. When CO interacts with the atom of

amphoteric elements, there are usually two types of bonds,

C2s - M(n�1)d s bond and Mns - CO p back-donating bond.

For example, in FeCO(S = 5), the orbital charges are Fe:

3d�0.244s+0.91 and C: 2s+0.182px
�0.342py

�0.34 compared with

Fe and CO, respectively. The same behavior can also be

observed for the isoelectronic compounds N2 and CN� of

monoxide carbon. In addition, because the 3d electronegati-

vity of scandium (wz(d) = 2.14) is too weak to gain electrons

from CO, it is predicted that there is no usual metal carbonyl

complex for scandium.

4. Population analysis

Assuming the overlap population between two basis functions

of the different atoms is shared equally by the atomic orbitals,

Mulliken population analysis (MPA)4 provides a simple qua-

litative picture for chemists and is effective for small basis sets.

However, because the extended basis sets for accurate calcula-

tions can not represent the true electronic capability of atoms,

the results of the original MPA could be unreasonable and

sensitive to the choice of basis sets,2 in particular when the

diffuse and polarization functions are added to basis sets.

In AOIM, these drawbacks can be mostly overcome by

improving the basis sets. First, we use the minimal basis set in

MPA to remove all the effects of the diffuse functions and the

polarization functions. So MPA on this basis set is always

reasonable. Secondly, the minimal basis set in MPA is opti-

mized by either accurate or calculated wave functions, in

which the incompleteness is minimized so that such z-opti-
mized AOs are in equilibrium state in molecules. The equili-

brium state of AOs provides a unified criterion intrinsically to

determine the basis set in MPA so that the numerical stability

of MPA is improved. As a consequence, Mulliken population

analysis would be improved by the optimized minimal basis set

and the MPA of AOIM would give more reliable and stable

results than the original MPA.

An alternative method to the conventional Mulliken popu-

lation analysis is the natural population analysis (NPA),2

which is less dependent on the basis sets than the original

MPA. However, the assigned atomic orbitals are obtained as

eigenfunctions of the first-order atomic density matrix so that

they are orthogonalized and multicentered, and consequently

some atomic features of orbitals are missing.

The approach of the atoms in molecules (AIM) is a much

less basis-set-dependent method based on analyzing the total

electron density,21 however the AIM fails to give any informa-

tion of atomic orbitals. Because AIM is intrinsically different

from MPA and NPA, we do not discuss it any further.

A reasonable population analysis requires numerical stabi-

lity and accuracy. We will compare AOIM with NPA and the

original MPA in these two respects.

Numerical stability

To illustrate the basis-set dependence of AOIM with NPA and

the original MPA, we have carried out the calculations with

the different basis sets 6-31G, 6-31++G, and 6-31G** on the

acetic acid, which includes some typical covalent bonds: C–H,

C–C, C–O, CQO, O–H, and the typical ionic compounds LiF

and NaCl. Table 2 compares the atomic charges calculated

from AOIM, NPA, and the original MPA as well as their

differences between different basis sets.

As a posterior analysis of the molecular wave function,

atomic charges must be related with wave functions so that the

numerical values of atomic charges may change slightly as the

wave function changes definitely. But if the wave functions

have no definite change in different basis sets, there should be

no obvious difference in the atomic charges. The difference of

HF energies using different basis sets is used and fit to denote

the difference of wave functions in a series of basis sets. From

the differences of HF energies of acetic acid, LiF, and NaCl

between 6-31++G and 6-31G (0.008 a.u., 0.016 a.u. and 0.003

a.u., respectively) and between 6-31G** and 6-31G (0.124 a.u.,

0.013 a.u. and 0.008 a.u., respectively), it is concluded that the

wave functions of each molecule are approximate to each

other for these different basis sets, except that of acetic acid

using 6-31G**.

Less difference between the atomic charges from approx-

imate calculated wave functions means more numerical stabi-

lity in population analysis. Table 2 shows that the average

(maximum) differences between the atomic charges from the

above approximate calculated wave functions are 0.01(0.03),

0.02(0.06), 0.06(0.16) for AOIM, NPA, and the original MPA,

respectively. Therefore the AOIM and NPA are less basis-set
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dependent than the original MPA. It was also seen that the

atomic charges changed slightly (0.04, 0.02 and 0.07 for

AOIM, NPA and original MPA, respectively) after the calcu-

lated wave functions changed definitely.

The bond order is another important parameter in the

chemical bond theory. The Mayer bond order11 is equal to

the experiential chemical bond order for the bonds such as

H–H(1.0), OQO(2.0), C–H(1.0). The original Mayer bond

order depends on basis sets. Table 3 compares Mayer bond

orders of acetic acid, from which we conclude that Mayer

bond orders of AOIM are independent of basis sets (with max.

error 0.02), and those from other methods are basis-set-

dependent (with max. error 0.19).

Therefore, the Mulliken population analysis of AOIM has

similar numerical stability with the popular NPA and is more

numerically stable than the original MPA. The Mayer bond

order of AOIM has more numerical stability than those on

basis sets for calculation.

Numerical accuracy

The accuracy of population analysis can be verified by the

experimental dipole moments22 of simple molecules. Because

MPA has less numerical stability, only the results of NPA and

AOIM are compared with the experimental values.

The ionic character of the bond can be calculated from the

atomic charges or experimental dipole moments for simple

molecules consisting of single bonds such as hydrides and ionic

halides. The fraction of ionic character (FIC) of bond is FIC

= m/(ZR), where m is the dipole moment, Z is the formal

atomic charge and R is the bond distance between two atoms.

For NH3, H2S, and H2O, the total dipole moments can be

decomposed as the vectors in different directions to calculate

the dipole moments of bonds. The calculated values of FIC of

hydrides (ionic halides) from molecular wave functions are just

the atomic charges of hydrogen (halogen) in molecules.

Fig. 3 describes the experimental and calculated FICs of

bonds in some hydrides, in which the FICs from AOIM are

closer to experimental values than those from NPA. The

calculated FICs of H2S and NH3 are smaller than experimen-

tal values because the experimental values have increments of

lone pair(s) on nitrogen and sulfur atom. Therefore the

populations of hydrides in AOIM are more reasonable than

those in NPA.

Fig. 4 describes the atomic charges of some typical alkali

metal halides, in which the tendency of AOIM is consistent

with that of electronegativities of halides (F > Cl > Br), while

Table 2 Atomic charges and their differences in CH3COOH, LiF, and NaCl

Basis set C1
a C3 O4 O5 H2 H6 LiF NaCl

AOIM 6-31G 0.38 0.87 0.63 0.59 0.12 0.38 0.96 0.89
6-31++G 0.38 0.90 0.64 0.61 0.12 0.39 0.97 0.89
D++b 0 3 1 2 0 1 1 0
6-31G** 0.34 0.96 0.67 0.63 0.10 0.39 0.96 0.89
D** 4 9 4 4 2 1 0 0

NPA 6-31G 0.78 0.93 0.67 0.78 0.26 0.51 0.92 0.94
6-31++G 0.73 0.90 0.67 0.78 0.25 0.52 0.98 0.96
D++ 5 3 0 0 1 1 6 4
6-31G** 0.76 0.99 0.70 0.79 0.25 0.52 0.92 0.94
D** 2 6 3 1 1 1 0 0

MPA 6-31G 0.51 0.69 0.53 0.70 0.21 0.43 0.74 0.78
6-31++G 0.67 0.60 0.55 0.59 0.24 0.51 0.76 0.76
D++ 16 9 22 1 3 8 2 2
6-31G** 0.41 0.72 0.56 0.59 0.16 0.36 0.66 0.67
D** 10 3 3 11 5 7 8 11

a Xn is the nth atom in molecular formula CH3COOH. b D++ (D**) is 100 times absolute difference of the atomic charge between 6-31++G

(6-31G**) and 6-31G.

Table 3 Mayer bond orders and maximum of differences between
different basis sets in CH3COOH

Basis set C–C C–O CQO C–H O–H

AOIM 6-31G 0.99 0.98 1.71 0.98 0.82
6-31++G 1.00 0.97 1.70 0.98 0.81
6-31G** 0.99 0.96 1.69 0.98 0.81
Dmax � 100 1 2 2 0 1

MPA 6-31G 0.89 0.90 1.84 0.94 0.76
6-31++G 0.77 0.96 1.89 0.93 0.69
6-31G** 0.96 1.00 1.87 0.96 0.85
Dmax � 100 19 10 5 3 16

Fig. 3 Comparisons of experimental values with NPA and AOIM in

fractions of ionic character of bonds in some hydrides.
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some abnormalities of tendency between F and Cl are ob-

served in NPA. Thus the population analysis of halide ionic

compound of AOIM is more reasonable than that of NPA.

Such comparisons in these typical simple molecules demon-

strate that the AOIMmay provide very reliable atomic charges

in molecules.

5. Conclusion

To analyze the properties of atoms from molecular wave

functions, we have developed an approach of the atomic

orbitals in molecules based on the optimized minimal basis

set. The optimized-z’s were used to calculate Pauling’s electro-

negativities of atoms in molecules, from which the electro-

negativity equilibrium in molecules is introduced, and the

transition metals from the groups 4 to 10 are treated as

amphoteric elements. The optimized minimal basis sets also

provide reasonable basis sets for Mulliken population analysis

such that the calculated atomic charges of hydrides are in good

agreement with the experimental data. In summary, AOIM is

powerful in studying the properties of atoms in molecules and

could give some quantitative information of classical chemical

bond theory, such as the electronegativity, atomic charge, and

bond order.
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