•研究论文•

手性金属配合物 Δ,Λ-[Ru(IP)₂dppz]²⁺对含 G:T 错配的环丁烷嘧啶二聚 体识别和部分构型修复的分子力学研究

常永龙 张翠萍 杨频*

(山西大学分子科学研究所 化学生物学与分子工程教育部重点实验室 太原 030006)

摘要 环丁烷嘧啶二聚体(Cyclobutane Pyrimidine Dimer, CPD)是紫外线对 DNA 损伤导致皮肤癌的首要环节, XPC-hHR23B 是最早作为对 CPD 的损伤识别剂的, 但其识别效率很低.本文首次采用分子力学方法模拟了一种新的手 性金属配合物 Δ,Δ-[Ru(IP)₂dppz]²⁺对含 G:T 错配的 CPD 双螺旋 DNA 的识别作用.模拟结果显示:金属配合物 [Ru(IP)₂dppz]²⁺的两个手性异构体都对含 G:T 错配的 CPD 双螺旋 DNA 具有识别作用,识别的过程体现了很强的手性选 择性、沟选择性和位点特异性.同时,我们发现:在 Δ-[Ru(IP)₂dppz]²⁺插入到 CPD 后,形成 CPD 的两个 T 碱基由原来 的敞口形状部分地转为近平行状,使其在构型上得到初步的修复.

关键词 金属配合物;环丁烷嘧啶二聚体;分子模拟;空间位阻;静电相互作用

Molecular Mechanics Study on the Recognition and Partial Structural Repair of Cyclobutane Pyrimidine Dimer Including Double G:T Mismatched Pairs by the Chiral Metal Complex Δ,Λ-[Ru(IP)₂dppz]²⁺

CHANG, Yong-Long ZHANG, Cui-Ping YANG, Pin*

(Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006)

Abstract The cyclobutane pyrimidine dimer (CPD) is the chief tache when ultraviolet ray damages DNA that could lead to skin cancer. XPC-hHR23B complex was used as the initial recognition complex of CPD. But its recognition efficiency was very low. This article firstly studied on the recognition of the chiral metal complex Δ , Λ -[Ru(IP)₂dppz]²⁺ to CPD double helix DNA including double G:T mismatched pairs by molecular modeling. The results revealed that both of two isomers of [Ru(IP)₂dppz]²⁺ could recognize CPD and the interaction was enantioselective, grooveselective and sitespecific. We also found that the shape of two T bases forming CPD changed from mouth shape to approximate parallel shape after Λ -[Ru(IP)₂dppz]²⁺ intercalating DNA. That was the initial conformational repair.

Keywords metal complex; cyclobutane pyrimidine dimer (CPD); molecular modeling; setric hindrance; electrostatic interaction

具有 G:C 和 A:T 的 Watson-Crick 碱基配对的 DNA 双螺旋是遗传信息储存、表达和稳定传递的重要载体, 这一特异性配对方式有利于核酸结构的稳定^[1~7].为了

使遗传信息准确地传给下一代, DNA 复制必须具有高的 精确性. 然而, 人类基因大约含有 10⁹个碱基对, 任何对 DNA 物理或化学的破坏都会影响到双螺旋结构的完整

* E-mail: yangpin@sxu.edu.cn

Received April 26, 2006; revised August 2, 2006; accepted September 26, 2006. 国家自然科学基金(Nos. 20601018, 30470408)及山西省自然科学基金资助项目.

性,导致在 DNA 复制过程中的碱基错配或误配、非配 对碱基及链的断裂等^[5~11].紫外线照射是导致氧化性损 伤的重要环境因素之一,长期暴露于紫外线是皮肤癌 (非黑色素性)的重要发病原因^[12]. 200~300 nm 的紫外 光辐射 DNA,吸收的能量将转移到四种碱基中三重态 能量最低的胸腺嘧啶(T)上,诱发其与同一链上相邻的 嘧啶碱基(T 或 C)发生环加成发应,生成环丁烷嘧啶二 聚体(CPD)^[13].如图 1,它是环丁烷胸腺嘧啶二聚体的 生成过程.

CPD 的生成将阻碍 DNA 的复制和转录, 引起细胞 变异, 并导致细胞死亡. 对于 DNA 的这种损伤, 一般是 通过核苷酸切除的途径进行修复. 核苷酸切除修复 (NER)机制主要包括损伤识别、切开、切除、修复合成 和 DNA 连接等五个步骤^[14~16]. 目前, 对于切除修复后 面几个步骤已有较为明确的认识, 而对于损伤识别这一 关键步骤的机制却不甚清楚, 其主要原因在于识别过程 需多种 DNA 结合蛋白参与, 而能和 DNA 结合的蛋白种 类又繁多^[17]. XPC-hHR23B 是最早在核苷酸切除修复的 初始阶段作为损伤识别剂的, 但其识别效率很低^[18]. 本 课题组曾首次尝试用大环平面芳香配体配合物 [Ru(phen)₂dppz]²⁺与含有双 G:T 错配碱基对的胸腺嘧啶 二聚体 DNA 作用, 并取得了良好的结果^[19], 本工作中, 我们继续采用分子力学方法模拟一种新的配合物 [Ru(IP)₂dppz]²⁺对 CPD 的识别情况.

1 计算模型

1.1 配合物模型

在前面的工作中,我们所用的配合物是 $[Ru(phen)_2dppz]^{2+}$,但是当插入配体相同时,适当增大 辅助配体的疏水作用,也可使配合物与 DNA 的结合增 强. Barton^[24]曾报道迄今为止和 DNA 作用最强的配合物 是 $[Ru(phen)_2dppz]^{2+}$,后有人合成出 $[Ru(IP)_2dppz]^{2+}$ 配合 物^[20],用IP代替辅助配体phen,实验证明该配合物与小 牛胸腺 DNA 的键合常数为 2.1×10^7 mol⁻¹•dm³,比 $[Ru(phen)_2dppz]^{2+}$ 的 7.5×10^6 mol⁻¹•dm³要大^[20].因此, 我们尝试用 $[Ru(IP)_2dppz]^{2+}$ 与含 G:T 错配的环丁烷嘧啶 二聚体 DNA 相互作用,以期找到 CPD 更好的识别探针. 图 2 为 phen 和 IP 的结构示意图.

图 2 辅助配体 phen 和 IP 的结构示意图 Figure 2 The structures of ancillary ligand phen and IP

配合物[Ru(IP)₂dppz]²⁺的模型是在 BUILDER 模块 下搭建的, 然后在 ESFF 力场下采用 Discover 98 依次进 行分子动力学和分子力学优化处理. 再分别将得到的构 象进行结构优化, 最后选取能量最低的结构模型. 除 Ru 原子外其它所有原子的表观电荷设为 0; 所有原子的部 分电荷由系统自行计算. 整个过程在真空中进行.

1.2 DNA 模型

在本工作中仍然选用含 G:T 错配的环丁烷嘧啶二 聚体 DNA. G:T 配对呈 Wobble 构型, 嘌呤位移至 DNA 小沟, 嘧啶位于大沟, 碱基间可以形成两个氢键, 溶剂 分子分别从大沟小沟有序地桥联碱基, 使这种错配更加 稳定. 根据 UV 光谱测得的 39 个含 G:T 配对的寡聚核苷 酸的热力学性质可知: G:T 在 DNA 中能形成稳定的 Wobble 配对, 其稳定性几乎与 Watson-Crick 配对的 A:T 相当^[1]. 有实验证明在含双 G:T 错配的 CPD 螺旋中, T 与相对的 G 碱基形成了稳定的 Wobble 配对^[14]. 图 3 为 CPD 中 G:T 碱基对所形成的氢键及本文所用的核酸序 列.

图 3 CPD 中 G:T 错配碱基对所形成的氢键及本文所用的核酸序列

Figure 3 Hydrogen bonds between G and T in CPD and the mismatched DNA series

错配 DNA 序列 5'-d(CGCATTACGC)₂-3'是从美国医 学会核酸库^[21]下载的,我们去掉了参与结晶的水分子及 金属离子,并按照 DNA 的成键形式重新修改了所有原子 的原子类型和所有的键,然后在 AMBER 力场下对其进 行了几何构型和能量最小化优化,接着由ESFF 力场自动 重新定义了它的电荷与原子类型.对配合物的优化是在 真空中进行的;考虑到水对 DNA 结构的稳定作用,对 DNA 的优化及后面所有含 DNA 的体系都是在水溶液中 进行的. 在整个过程中, 我们均使用 ESFF 力场处理二者 的相互作用, 各项参数均使用程序的系统默认值.

2 计算方法

文中所涉及到的所有模拟工作均在 SGI 工作站上 使用 InsightII 2000 软件包完成.

在模拟过程中,在配合物-错配 DNA 的体系中加入 16 个 Na⁺离子来中和体系中带负电的 DNA 边链和带正 电的 Ru(II).在几何优化与能量最小化的过程开始的时 候,使用最陡下降法计算,直到 RMS 值小于 20.93 kJ/mol,然后由 Discover 98 自动转换到共轭梯度法继续 计算直到 RMS 值小于 2.093 kJ/mol 才停止.

许多工作组的研究结果表明:含大平面芳香杂环配体的过渡金属配合物对错配 DNA 的识别作用方式之一 是经典插入^[22,23].考虑到末端效应,处于末端的碱基对 未列入考察的范围.对其余部分,我们使用 Docking 方 法手动将配合物的每个异构体插入到了寡聚 DNA 每两 个碱基对之间,分别在大小沟进行.将配合物的 dppz 平 面沿着平行于碱基对平面(垂直于 DNA 螺旋轴)的方向 置于刚好完全离开 DNA 双螺旋的位置,将该点定义为 第一个插入点,插入深度为0. 然后,采用 Docking 方式 手动将配合物插入到 DNA 碱基堆积中去,每隔 2 Å 选 取一个记录点,相应的插入深度分别为 2,4,…Å,直到 将配合物 dppz 平面完全插入到 DNA 螺旋中去. 然后对 每一个记录点上配合物与 DNA 相互作用的体系进行结 构优化,通过考察其势能分布情况,就可以得到最优的 结合位点及其各能量项的值. 我们分别考察了配合物的 两个手性异构体与 DNA 的作用. 金属配合物、插入配 体 dppz 和 DNA 双螺旋体系都具有很高的对称性,所以 我们没有对各个位点进行重复计算.

3 计算结果

计算结果列于下面的表 1~4 中. 表中所列数据为 金属配合物插入该位点后体系的势能值,在没有插入之 前, DNA 的优化势能值为 11687.31 kJ/mol, Λ-, Δ-[Ru(IP)₂dppz]²⁺的能量均为 232.53 kJ/mol. 也就是说,

表1 Λ-[Ru(IP)₂dppz]²⁺与错配 DNA 从大小沟方向分别作用的能量值(kJ/mol)

Table 1 Potential energy of Λ -[Ru(IP)₂dppz]²⁺ binding with mismatched DNA from major and minor groove respectively (kJ/mol)

_	Major groove							Minor groove						
-	$G_2C_3^{\ b}$	C_3A_4	A_4T_5	T_5T_6	T_6A_7	A_7C_8	C_8G_9	G_2C_3	C_3A_4	A_4T_5	T_5T_6	T_6A_7	A_7C_8	C_8G_9
00^a	8029.6	7841.6	7788.5	7960.1	8550.7	8591.3	8729.9	8416.8	8334.3	8020.8	7363.2	7883.1	7753.3	8446.5
02	7989.8 ^c	7793.9	7652.0	7729.0	8298.3	8322.6	8494.2	8120.8	7989.4	7738.7	7886.8	7735.7	7525.2	8117.5
04	7998.6	7782.6	7632.8	7567.5	8084.8	8068.1	8172.7	7874.7	7747.9	7588.8	7565.8	7763.8	7480.8	7929.1
06	8043.0	7746.2	7518.1	7496.3	7822.8	7808.6	7898.1	7825.7	7610.1	7540.2	7496.3	7838.7	7541.9	7875.1
08	_	7782.2	7390.8	7567.6	7550.7	7568.3	7706.4	7731.1	7471.6	7274.0	7478.3	8165.6	7662.9	7886.4
10	_		7416.8		7476.2	7500.1	7632.8	7613.5	7336.0	7212.5	7489.6	_		7869.3
12	_		7660.8		7510.1	7492.1	7766.3	7600.5	7292.8	7261.9	7593.8	_		7891.9
14	—					7569.5	—	7672.1	7410.5				—	7932.9
16		—	—	—	—	—	_	_	—	—		—		—

"表示插入深度,单位为Å;"表示插入区域;单位为kJ/mol;"黑色表示最佳插入深度处的势能值.

表 2 Δ-[Ru(IP)₂dppz]²⁺与错配 DNA 从大小沟方向分别作用的能量值(kJ/mol)

Table 2	Potential energy of Δ -[Ru(IP) ₂ dppz] ²⁺	binding with mismatched DNA from major and n	ninor groove respectively (kJ/mol)

	Major groove							Minor groove						
	$G_2C_3^{\ b}$	C_3A_4	A_4T_5	T_5T_6	T_6A_7	A_7C_8	C ₈ G ₉	G_2C_3	C_3A_4	A_4T_5	T_5T_6	T_6A_7	A_7C_8	C_8G_9
00^a	8032.5 ^c	7850	7797.3	7991.9	8655.4	8619.8	8725.3	8529.4	8416.0	8155.6	8111.6	7932.5	7905.7	8515.2
02	8032.9	7802.3	7634	7780.5	8398	8351.5	8509.3	8221.3	8053.9	7887.7	7837.0	7801.4	7597.6	8187.0
04	8059.7	7804.4	7595.1	7649.5	8040.9	8073.1	8229.3	7957.6	7763.4	7630.7	7646.1	7731.5	7469.5	7937.5
06	8125	7850.4	7464.1	7506.8	7927	7810.7	7917.8	7885.2	7587.1	7554.1	7596.8	7793.1	7533.1	7865.1
08	—	7886	7359.4	7487.9	7852.5	7604.7	7739.9	7866.7	7526.8	7427.2	7632.3	—		7945.9
10	_	7890.2	7404.2	7531.5	7623.1	7503.4	7725.7	7649.5	7348.9	7363.6		—	—	
12	—	7940.9			7500.1	7556.1	7799.8	7567.5	7510.1	7419.3		—	—	
14	—	—		—	7490		—	7563.7	—		—	—	—	
16	_	_	_		7464.1		—	7543.6				—		_

"表示插入深度,单位为 Å; ^b表示插入区域;单位为 kJ/mol; ^c 黑色表示最佳插入深度处的势能值.

表 3 Λ-[Ru(IP)₂dppz]²⁺从大沟方向插入到 A₄T₅/T₇G₆位点的详细能量项(kJ/mol)

Table 3 Det	ailed energy distrib	ution for inserting	$g A_4 T_5 / T_7 G_6$ by c	omplex Λ -[Ru(II) ₂ dppz] ² in ma	for groove orient	ation (kJ/mol)
	00	02	04	06	08	10	12
Total	7788.5	7652.0	7632.8	7518.1	7390.8	7416.8	7547.8
Internal	2575.2	2550.9	2581.1	2580.3	2610.3	2651.8	2694.9
Non-bond	5213.2	5101.1	5051.7	4937.8	4780.0	4764.9	4852.8
VDW	-4.6	49.4	91.3	96.3	82.9	28.0	41.0
Electrostatic	5217.8	5051.7	4960.4	4841.5	4697.1	4736.9	4811.4

表4 Λ -[Ru(IP)₂dppz]²⁺从小沟方向插入到 A₄T₅/T₇G₆位点的详细能量项(kJ/mol)

Table 4	Detailed energy	distribution f	or inserting A	$\Lambda_4 T_5/T_7$	₇ G ₆ by	complex	Λ -[Ru(IP) ₂ dppz] ²⁺	in minor groove orientation	on (kJ/mol)
---------	-----------------	----------------	----------------	---------------------	--------------------------------	---------	---	-----------------------------	-------------

	00	02	04	06	08	10	12
Total	8020.8	7738.7	7588.8	7450.2	7274.0	7212.5	7261.9
Internal	2558.9	2543.0	2551.8	2563.9	2611.6	2621.7	2659.8
Non-bond	5461.9	5195.7	5037.0	4886.3	4662.4	4592.0	4602.1
VDW	22.2	53.6	105.5	91.3	58.6	71.2	33.9
Electrostatic	5439.7	5141.7	4931.5	4795.1	4603.8	4519.6	4568.2

插入前,包含 DNA 和金属配合物的体系能量为 11919.84 kJ/mol.

4 分析与讨论

初步分析发现:两个手性异构体都能在各个位点或 多或少地插入到碱基堆积中, 且插入后整个体系的势能 值远低于插入前 DNA 和金属配合物各自能量之和, 只 是由于各种因素的影响,最佳插入深度不尽相同;且具 有明显的手性选择性和沟选择性. 我们所用的 DNA 序 列是两端对称的, 故金属配合物对它的识别作用位点应 该对称地存在两处,但是由于 CPD 的形成, DNA 双螺旋 高度扭曲,同时由于所用的金属配合物辅助配体较大, 使得该识别作用过程空间位阻增大, 仅表现出一定的位 点特异性,即[Ru(IP)2dppz]²⁺的左手异构体选择性很明 显,优先从小沟方向识别与错配相邻的区域 A₄T₅,而右 手异构体没有明显的沟选择性和位点特异性.其中,左 手异构体与 CPD 作用后能量最低, 整个过程体现了强 的手性选择性. 详细能量的分析发现: 主要是配合物插 入碱基堆积过程中的空间位阻状况决定了识别作用的 结果,静电相互作用也在一定程度上产生了影响.此外, 我们还发现, 配合物插入双螺旋 DNA 后, 形成 CPD 的 两个 T 碱基形状发生了变化, 更接近正常碱基对, 这是 配合物对 CPD 在构型上的部分修复.同时还发现,这一 修复比[Ru(phen)2dppz]²⁺对 CPD 的修复要强一些^[19].

4.1 沟选择性的研究

优先从小沟方向插入的结果同其它实验工作组对 类似识别体系的研究结果是一致的^[3~7],我们所搭建的 金属配合物模型中,dppz 部分的横向直径约为 4.92 Å, 这个数值要比大沟宽度(29.857 Å)、小沟宽度(15.851 Å) 都小得多.也就是说,如果只考虑这些因素,那么,无 论在大、小沟都能顺利插入.显然,影响插入的还有其 它作用因素存在.我们主要从空间相互作用和静电相互 作用两方面考察.

4.1.1 空间相互作用

当 dppz 配体从大沟方向进行插入时,配合物会遭 遇较大的阻力,而从小沟方向插入的时候,dppz 插入方 向与碱基、糖环方向一致,所以它们之间不会产生高能 接触,遇到的阻力要小得多(如图 4).

图 4 配合物分别从大、小沟方向插入碱基堆积的位阻示意图 **Figure 4** Steric hindrance when the complex was intercalated to DNA from major and minor groove respectively

这主要是因为相对来说,大沟方向拥有更多的碱基 对和磷酸骨架,所以当 dppz 从大沟插入时,辅助配体 IP 与碱基对之间的空间排斥作用很大,容易同磷酸骨架冲 突;而从小沟插入的时候,配合物遇到的阻力要小很多, 此时金属配合物定位同磷酸骨架的螺旋方向一致,这样 可以避免与其冲突,导致更少的空间碰撞.此外,碱基 对的伸展方向也是决定沟选择性的一个重要原因.在本 文所研究的 DNA 中,碱基大致是从小沟方向伸向大沟 方向的,当配合物从大沟方向插入碱基堆积时,空间相 互作用的结果将导致插入区域的碱基向小沟方向移动, 这种移动会使 DNA 的结构在空间上变得拥挤.而配合 物从小沟方向插入碱基堆积时,碱基将向大沟方向移 动,因碱基伸展方向的原因加上大沟方向比较宽阔,不 会出现结构上的拥挤.这样配合物从大沟方向插入时遭 遇了很大的空间阻力.而从小沟插入的时候,阻力要小 得多.

4.1.2 静电相互作用

在所有的作用模型中,最优的是左手构型的配合物 从小沟方向插入到 A₄T₅/T₇G₆位点处,表 3,4 列出了在 A₄T₅/T₇G₆位点上从大沟、小沟插入过程中不同深度的 详细能量变化情况.表中第一行表示插入深度,单位为 Å;第一列表示各能量项;表中数据为能量值,单位为 kJ/mol. Total 表示体系总能量, Internal 表示体系成键作 用能, Non-bond 表示体系非键作用能, VDW 表示范德华 作用能, Eletrostatic 表示静电作用能;加粗部分显示的 是最佳深度.

对比 A-[Ru(IP)₂dppz]²⁺从大沟和小沟分别插入的情况可以看出,导致沟选择性的主要因素应该是静电作用,而不是范德华作用能.其中,在最佳深度上,从不同的沟插入之间总能量相差 207.04 kJ/mol,其中静电作用能相差为 217.25 kJ/mol.因此,我们可以认为,配合物和 DNA 螺旋中的电荷分布可能是决定沟选择性的主要因素.由于计算中没有考虑表观电荷,可能是部分电荷的分布在起作用.

4.2 手性选择性的研究

Δ-[Ru(IP)₂dppz]²⁺与 DNA 作用时,没有表现出明显 的沟选择性和位点特异性,为了便于比较说明手性选择 性,我们选择了 Δ, Λ-[Ru(IP)₂dppz]²⁺分别从小沟方向在 A₄T₅ 位点处插入后能量最低的模型. 在[Ru(IP)₂dppz]²⁺ 对含 CPD 的错配 DNA 识别过程中,其左手异构体从小 沟方向在 DNA 的 A₄T₅ 位点处的插入优于从其它所有位 点进行 插入的情况,表现出了明显的手性选择性.

对于 B-DNA, 当金属配合物插入 DNA 螺旋后, 配合物的两个尾部配体应该与 DNA 的螺旋骨架手性匹配,

这样它们才能有效地相互作用.通常, Δ-构型的配合物 与整个双螺旋体系能更好地匹配.但是,我们所用的 CPD 序列含有 G:T 双碱基 Wobble 配对,其 T 碱基与所 配对的 G 碱基形成稳定的氢键,双螺旋构象也发生了比 较严重的扭转,在双 G:T 碱基 Wobble 配对的位置,DNA 骨架构象有波动.与[Ru(phen)₂dppz]²⁺相类似,这一变 化使得 Δ-构型的配合物不再很好地与双螺旋匹配,反而 产生很大的空间位阻,其尾部的两个辅助配体受到很强 的挤压,甚至插入配体 dppz 也被挤压扭曲,致使整个作 用体系势能升高.

从配合物与 DNA 作用的空间构型来看, Λ -[Ru(IP)₂dppz]²⁺插入CPD后,它的两个辅助配体IP分 别与 T₇T₅靠近,而 Δ -[Ru(IP)₂dppz]²⁺插入后则与 A₄G₆靠 近(如图 5). 嘌呤碱基均比嘧啶碱基大,在发生空间冲突 时,和嘧啶碱基相比,嘌呤碱基将带来更大的空间阻力. 因此,从空间相互作用来说,左手配合物更具有优势.

图 5 [Ru(IP)₂dppz]²⁺从小沟方向插入 CPD 的 A₄T₅处的空间 位阻图(左: Λ-, 右: Δ-)

Figure 5 Steric hindrance when $[Ru(IP)_2dppz]^{2+}$ intercalated DNA from minor groove (left: Λ -, right: Δ -)

4.3 详细能量的分析

基于详细能量的分析,也支持以上的结论. 表 5 为 Δ, Λ-[Ru(IP)₂dppz]²⁺分别从小沟方向在A₄T₅位点处插入 的详细能量项,能量单位为 kJ/mol. 其中, Total 是总能 量; Non-bond 是非键能量,它是范德华作用能 VDW 与 静电能 Elect 之和,用来描述空间相互作用; Internal 是成 键作用能. 能量的单位均为 kJ/mol. 结果显示,每个模 型的 Non-bond 的影响都明显大于 Internal,说明空间相 互作用的影响是主要的,这与上面的结论一致.

在 Non-bond 内部, Electrostatic 的值高出 VDW 两到 三个数量级,这表明 VDW 的影响很小,一般情况下 Electrostatic 的大小决定了总能量的大小,只有当 Elect 的值相差不多时,才由 Internal 来决定大小. 在 A_4T_5 位

表 5 A, Δ -[Ru(IP)₂dppz]²⁺分别从小沟方向在 A₄T₅位点处插入的详细能量项(kJ/mol) Table 5 Detailed energy distribution for A. Δ -[Ru(IP)₂dppz]²⁺ inserting A₄T₅/T₇G₆ from minor groove orientation (kJ/mol)

	, L	() <u>2</u> II J	8 4 5 7 0	8	
	Total	Internal	Non-bond	VDW	Electrostatic
Λ -[Ru(IP) ₂ dppz] ²⁺	7212.5	2621.7	4592.0	71.2	4519.6
Δ -[Ru(IP) ₂ dppz] ²⁺	7363.2	2637.6	4725.6	56.1	4669.5

点处,其 Λ -[Ru(IP)₂dppz]²⁺与 DNA 作用后的 Non-bond 值是所有模型里最低的,说明 Λ -[Ru(IP)₂dppz]²⁺从小沟 方向插入 DNA 时所遇到的空间阻力最小,比 Δ -[Ru(IP)₂dppz]²⁺能更好地与高度扭曲的 CPD 螺旋相匹 配.同时 Λ -[Ru(IP)₂dppz]²⁺与 DNA 作用后的 Internal 也 比 Δ -[Ru(IP)₂dppz]²⁺稍低一点,说明 Λ -[Ru(IP)₂dppz]²⁺ 与 DNA 作用时插入配体 dppz 与碱基间的 π - π 堆积要比 Δ -[Ru(IP)₂dppz]²⁺与 DNA 的碱基堆积更加紧密一些.因 此配合物[Ru(IP)₂dppz]²⁺插入 DNA 并与之作用的过程 中,优先选择了左手构型的异构体.

4.4 插入前后 DNA 结构的变化

与之前的作用结果相类似,金属配合物 [Ru(IP)₂dppz]²⁺插入DNA 螺旋后,DNA 的结构与插入前 比较发生了很大的变化. 配合物的两个手性异构体插入 DNA时, 插入区域为容纳配体dppz, 碱基对之间的平均 距离都大约增大到原来的 2 倍. 其它位点上 DNA 结构 则基本不变.更为重要的是,最优的结合模型是 Λ -[Ru(IP)₂dppz]²⁺从小沟方向插入 DNA 的 A₄T₅位点处, 这恰好是与CPD相邻的位置. CPD是由于碱基之间成键 而生成的,它的生成使得原本应该平行的两个T碱基呈 敞口形状. 当金属配合物从该位点插入时, 邻近的 T 碱 基会受到压迫, 敞口会向着平行状收缩, 两个T碱基之间 的距离就会有所减小,从3.72 Å减小到3.32 Å,与正常碱 基对之间的距离 3.40 Å 接近(如图 6). 这是对 CPD 损伤在 构型上的初步修复.同时,与 Λ -[Ru(phen)₂dppz]²⁺插入后 CPD 相邻 T 碱基之间的距离 3.37 Å 相比^[19], A-[Ru(IP)₂dppz]²⁺使得 CPD 中两个 T 碱基收缩更多, 修复效果要 好一些.

图 6 金属配合物插入前(右)、后(左),形成 CPD 的两个 T 碱 基间距离的变化

Figure 6 The changes of distance between two thymines forming CPD before (right) and after (left) intercalating

5 结论

本工作首次发现大环平面芳香配体配合物 [Ru(IP)₂dppz]²⁺对含G:T错配的CPD 双螺旋DNA有识 别作用,且对CPD 有初步修复功能,具体的结论是:(1) 金属配合物[Ru(IP)₂dppz]²⁺的两个手性异构体都对含 G:T 错配的 CPD 双螺旋 DNA 具有识别作用,识别的过 程体现了较强的手性选择性、沟选择性和位点特异性. 其左手异构体比右手异构体更占优势,能特异性地识别 与 CPD 相邻的位点 A₄T₅/T₇G₆处.且与其它最优化模型 的能量差较大,超过室温下环境所能提供的能量(29.30 kJ/mol),故在实验上也应该能将它们区分开来.(2)通过 详细的能量分析发现,主要是空间相互作用决定了识别 的结果,静电相互作用也起到很重要的作用.(3)在 A-[Ru(IP)₂dppz]²⁺插入到与 CPD 相邻的位点 A₄T₅/T₅G₆ 处后,形成CPD 的两个T碱基由原来的敞口形状部分地 转为近平行状,使其在构型上得到初步的修复.与 A-[Ru(phen)₂dppz]²⁺相比, A-[Ru(IP)₂dppz]²⁺使得 CPD 中 两个T碱基收缩更多,修复效果要好一些.

References

- Yang, P.; Gao, F. The Principle of Bioinorganic Chemistry, Science Press, Beijing, 2002, pp. 516~518 (in Chinese). (杨频,高飞,生物无机化学原理,科学出版社,北京, 2002, pp. 516~518.)
- 2 Chen, H.-L; Yang, P. Prog. Chem. 2002, 14, 133 (in Chinese).

(陈绘丽,杨频,化学进展,2002,14,133.)

3 Chen, H.-L.; Yang, P. Prog. Chem. 2002, 14, 239 (in Chinese).

(陈绘丽, 杨频, 化学进展, 2002, 14, 239.)

- 4 Harfe, B. D.; Jinks-Robertson, S. Annu. Rev. Genet. 2000, 34, 359.
- 5 Buermeyer, A. B.; Deschenes, S. M.; Baker, S. M.; Liskay, R. M. Annu. Rev. Genet. 1999, 33, 533.
- 6 Reynisson, J.; Steenken, S. Phys. Chem. Chem. Phys. 2002, 4, 5353.
- 7 Joshi, H. S.; Tor, Y. Chem. Commun. 2001, (6), 549.
- 8 Schlientz, N. W.; Schuster, G. B. J. Am. Chem. Soc. 2003, 125, 15732.
- 9 Florian, J.; Warshel, A.; Goodman, M. F. J. Phys. Chem. 2002, 106, 5754.
- 10 Giri, I.; Stone, M. P. Biochemistry 2003, 42, 7023.
- Nkatani, K.; Sando, S.; Kumasawa, H.; Kikuchi, J.; Saito, I. J. Am. Chem. Soc. 2001, 123, 12650.
- E, X.-F.; Zhu, X.-D.; Li, J.; Liu, Y.; Sun, X.-Y.; Wang, B.-X. Carcinogenesis Teratogenesis and Mutagenesis 1998, 10, 331 (in Chinese).
 (鄂晓飞,朱旭东,李晶,刘扬,孙新艳,王丙贤, 癌变•畸 变•突变, 1998, 10, 331.)
- Yan, L.-Q.; Song, Q.-H.; Guo, Q.-X. Chin. J. Org. Chem.
 2002, 22, 929 (in Chinese).
 (晏利琴, 宋钦华, 郭庆祥, 有机化学, 2002, 22, 929.)
- 14 Richard, D. W. J. Biol. Chem. 1997, 272, 23456.
- 15 Moser, J.; Volker, M.; Kool, H.; Alekseev, S.; Vrieling, H.;

Yasui, A.; Van Zeeland, A. A.; Mullender, L. H. F. *DNA Repair* 2005, *4*, 571.

- 16 Mullenders, L. H. F.; Berneburg, M. J. Photochem. Photobiol. B 2001, 65, 97.
- Hu, J.-S.; Huang, C.; Song, T.-S.; Wang, Y.-L. Foreign Med. Sci. (Genet. Fascicle) 2002, 25, 365 (in Chinese).
 (胡劲松, 黄辰, 宋土生, 王一理, 国外医学遗传学分册, 2002, 25, 365.)
- 18 Lee, J. H.; Park, C. J.; Choi, B. S. Nucleic Acids Res. 2004, 32, 2474.
- 19 Zhang, C.-P.; Yang, P. J. Mol. Sci. 2005, 21, 26 (in Chinese).

(张翠萍,杨频,分子科学学报,2005,21,26.)

- 20 Ji, L.-N.; Zhang, Q.-L.; Liu, J.-G. Sci. China, Ser. B 2001, 31, 193 (in Chinese).
 (计亮年,张黔玲,刘劲刚,中国科学 B 辑, 2001, 31, 193.)
- 21 http://www.ncbi.nlm.nih.gov/entrez.
- 22 Kathryn, E. E.; Duncan, T. O.; Barton, J. K. *Chem. Rev.* **1999**, *99*, 2777.
- 23 Xiong, Z.-H.; Yang, P. Chem. Res. Appl. 2002, 14, 649 (in Chinese).

(熊振海,杨频,化学研究与应用,**2002**,14,649.)

24 Jen kins, Y.; Friedman, A. E.; Turro, N. J.; Barton, J. K. *Biochemistry* 1992, 31, 10809.

(A0604267 LU, Y. J.; ZHENG, G. C.)

